Kaname Kojima

Learn More
Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms(More)
High-throughput RNA sequencing (RNA-Seq) enables quantification and identification of transcripts at single-base resolution. Recently, longer sequence reads become available thanks to the development of new types of sequencing technologies as well as improvements in chemical reagents for the Next Generation Sequencers. Although several computational methods(More)
Clearly visualized biopathways provide a great help in understanding biological systems. However, manual drawing of large-scale biopathways is time consuming. We proposed a grid layout algorithm that can handle gene-regulatory networks and signal transduction pathways by considering edge-edge crossing, node-edge crossing, distance measure between nodes, and(More)
MOTIVATION Many human genes express multiple transcript isoforms through alternative splicing, which greatly increases diversity of protein function. Although RNA sequencing (RNA-Seq) technologies have been widely used in measuring amounts of transcribed mRNA, accurate estimation of transcript isoform abundances from RNA-Seq data is challenging because(More)
MOTIVATION Properly drawn biological networks are of great help in the comprehension of their characteristics. The quality of the layouts for retrieved biological networks is critical for pathway databases. However, since it is unrealistic to manually draw biological networks for every retrieval, automatic drawing algorithms are essential. Grid layout(More)
We study the problem of learning an optimal Bayesian network in a constrained search space; skeletons are compelled to be subgraphs of a given undirected graph called the super-structure. The previously derived constrained optimal search (COS) remains limited even for sparse superstructures. To extend its feasibility, we propose to divide the(More)
The Tohoku Medical Megabank Organization reports the whole-genome sequences of 1,070 healthy Japanese individuals and construction of a Japanese population reference panel (1KJPN). Here we identify through this high-coverage sequencing (32.4 × on average), 21.2 million, including 12 million novel, single-nucleotide variants (SNVs) at an estimated false(More)
Validation of single nucleotide variations in whole-genome sequencing is critical for studying disease-related variations in large populations. A combination of different types of next-generation sequencers for analyzing individual genomes may be an efficient means of validating multiple single nucleotide variations calls simultaneously. Here, we analyzed(More)
Heterozygous GATA-2 germline mutations are associated with overlapping clinical manifestations termed GATA-2 deficiency, characterized by immunodeficiency and predisposition to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, there is considerable clinical heterogeneity among patients, and the molecular basis for the evolution of(More)
We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and(More)