Learn More
Interleukin (IL)-18 is an important regulator of innate and acquired immune responses. Here we show that both the IL-18 and IL-18 receptor (IL-18R), which are induced in spinal dorsal horn, are crucial for tactile allodynia after nerve injury. Nerve injury induced a striking increase in IL-18 and IL-18R expression in the dorsal horn, and IL-18 and IL-18R(More)
Clinically, it has been reported that chronic pain induces depression, anxiety, and reduced quality of life. The endogenous opioid system has been implicated in nociception, anxiety, and stress. The present study was undertaken to investigate whether chronic pain could induce anxiogenic effects and changes in the opioidergic function in the amygdala in(More)
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of(More)
Insomnia is a common problem for people with chronic pain. Cortical GABAergic neurons are part of the neurobiological substrate that underlies homeostatic sleep regulation. In the present study, we confirmed that sciatic nerve ligation caused thermal hyperalgesia and tactile allodynia in mice. In this experimental model for neuropathic pain, we found an(More)
The present study was undertaken to investigate the role of spinal voltage-dependent calcium channel alpha(2)delta-1 subunit in the expression of a neuropathic pain-like state induced by partial sciatic nerve ligation in mice. In cultured spinal neurons, gabapentin (GBP), which displays the inhibitory effect of alpha(2)delta-1 subunit, suppressed the(More)
Interleukin-18 (IL-18) is an important regulator of innate and immune responses, and is known to be expressed in various types of cells and upregulated in pathological conditions including tissue injury and inflammation, suggesting it has both proinflammatory and compensatory roles. Here we show that IL-18 was increased in microglia in the trigeminal spinal(More)
It has been widely recognized that chronic pain could cause physiological changes at supraspinal levels. The delta-opioidergic system is involved in antinociception, emotionality, immune response and neuron-glia communication. In this study, we show that mice with chronic pain exhibit anxiety-like behavior and an increase of astrocytes in the cingulate(More)
The present study was undertaken to investigate pharmacological actions induced by morphine and oxycodone under a neuropathic pain-like state. In the mu-opioid receptor (MOR) binding study and G-protein activation, we confirmed that both morphine and oxycodone showed MOR agonistic activities. Mice with sciatic nerve ligation exhibited the marked neuropathic(More)
Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT(3) receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT(3) receptor and its(More)
Central mechanisms of neuropathy induced by chronic ethanol treatment are almost unknown. In this study, rats were treated with ethanol-diet for 72 days. Mechanical hyperalgesia was observed during ethanol consumption, even after ethanol withdrawal. Under these conditions, a microglial marker ionized calcium-binding adaptor molecule 1-, but not a neuron(More)