Learn More
It is well known that stochastic control systems can be viewed as Markov decision processes (MDPs) with continuous state spaces. In this paper, we propose to apply the policy iteration approach in MDPs to the optimal control problem of stochastic systems. We first provide an optimality equation based on performance potentials and develop a policy iteration(More)
Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can(More)