Learn More
Two transformation systems, based on the use of CaCl2/PEG and Agrobacterium tumefaciens, respectively, were developed for the zygomycete Rhizopus oryzae. Irrespective of the selection marker used, a pyr4 marker derived from R. niveus or a dominant amdS + marker from Aspergillus nidulans, and irrespective of the configuration of the transforming DNA (linear(More)
Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined(More)
Antidepressants are widely prescribed in the treatment of depression, although the mechanism of how they exert their therapeutic effects is poorly understood. To shed further light on their mode of action, we have attempted to identify a common proteomic signature in guinea pig brains after chronic treatment with two different antidepressants. Both(More)
We have identified an alternatively spliced 5-hydroxytryptamine 2A receptor (5-HT(2A)-R) transcript by PCR of human brain cDNA using degenerate oligonucleotide primers to transmembrane (TM) domains 3 and 7 of the 5-HT(2)-R subfamily. The variant contains a 118-bp insertion at the exon II/III boundary of the 5-HT(2A)-R, which produces a frame shift in the(More)
EDG receptors are a family of closely related G-protein-coupled receptors, so-called since the first family member to be cloned is encoded by an endothelial differentiation gene. Of the six family members identified, five use lysophospholipids as their endogenous ligands. The sixth receptor, EDG-6, remains an orphan. These receptors activate multiple(More)
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. This requires an understanding of the molecular events and biological features that regulate the self-renewal of NPCs and their differentiation into neurons, astrocytes, and oligodendendrocytes. In this study, we have characterized the proteomic(More)
This paper describes the use of fluorescence two-dimensional differential in-gel electrophoresis in a multiplex analysis of two distinct proteomes. As a model system, cerebral cortex tissues were analyzed from neurokinin1 receptor knockout (NK(1)R-/-) and wild type (NK(1)R+/+) mice in an attempt to identify molecular pathways involved in the function of(More)
The identification of biomarkers for disease state, drug efficacy, and toxicity is becoming increasingly important for drug discovery and development. We have used two-dimensional differential in-gel electrophoresis and mass spectrometry to identify proteomic markers associated with hepatocellular steatosis in rats after dosing with a compound (CDA) in(More)
Some patients with Major Depression and other neurological afflictions display hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. HPA hyperactivity may be due to impaired feedback inhibition and manifested as increased levels of circulating cortisol. Subcutaneous implants of corticosterone pellets were used to mimic this situation in mice to(More)
Recombinant receptor cell lines are widely used in G-protein-coupled receptor selectivity studies. To unequivocally interpret the results of such studies, it is essential that the host cell line does not endogenously express the receptor of interest and in addition is unresponsive to the receptor's natural ligand. Here we describe an approach to overcome(More)