Kamran Javed

Learn More
The performance of data-driven prognostics approaches is closely dependent on the form and trend of extracted features. Indeed, features that clearly reflect the machine degradation should lead to accurate prognostics, which is the global objective of this paper. This paper contributes a new approach for feature extraction/selection: The extraction is based(More)
Estimating remaining useful life (RUL) of critical machinery is a challenging task. It is achieved through essential steps of data acquisition, data pre-processing and prognostics modeling. To estimate RUL of a degrading machinery, prognostics modeling phase requires precise knowledge about failure threshold (FT) (or failure definition). Practically,(More)
Proton Exchange Membrane Fuel cells (PEMFC) are energy systems that facilitate electrochemical reactions to create electrical energy from chemical energy of hydrogen. PEMFC are promising source of renewable energy that can operate on low temperature and have the advantages of high power density and low pollutant emissions. However, PEMFC technology is still(More)
Performances of data-driven approaches are closely related to the form and trend of extracted features (that can be seen as time series health indicators). (1) Even if much of data-driven approaches are suitable to catch non-linearity in signals, features with monotonic trends (which is not always the case!) are likely to lead to better estimates. (2) Also,(More)
Proton Exchange Membrane Fuel cells (PEMFC) are one of the most promising fuel cell technologies, which qualify for variety of applications as power generation source. The Prognostics & Health Management of fuel cell is an emerging field, which is paving the way for large scale industrial deployment of PEMFC technology. More precisely, prognostics of(More)
Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of(More)
Combining neural networks and wavelet theory as an approximation or prediction models appears to be an effective solution in many applicative areas. However, when building such systems, one has to face parsimony problem, i.e., to look for a compromise between the complexity of the learning phase and accuracy performances. Following that, the aim of this(More)
Although efforts in this field are significant around the world, real prognostics systems are still scarce in industry. Indeed, it is hard to provide efficient approaches that are able to handle with the inherent uncertainty of prognostics and nobody is able to a priori ensure that an accurate prognostic model can be built. As for an example of remaining(More)
Within condition based maintenance (CBM), the whole aspect of prognostics is composed of various tasks from multidimensional data to remaining useful life (RUL) of the equipment. Apart from data acquisition phase, data-driven prognostics is achieved in three main steps: features extraction and selection, features prediction, and health-state classification.(More)
Prognostic aims at estimating the remaining useful life (RUL) of a degrading equipment, i.e at predicting the life time at which a component or a system will be unable to perform a desired function. This task is achieved through essential steps of data acquisition, feature extraction and selection, and prognostic modeling. This paper emphasizes on the(More)
  • 1