Learn More
This paper presents a state-of-the-art RF microelectromechanical systems wide-band miniature tunable filter designed for 6.5-10-GHz frequency range. The differential filter, fabricated on a glass substrate using digital capacitor banks and microstrip lines, results in a tuning range of 44% with very fine resolution, and return loss better than 16 dB for the(More)
This paper presents a high-performance substrate-integrated-waveguide RF microelectromechanical systems (MEMS) tunable filter for 1.2-1.6-GHz frequency range. The proposed filter is developed using packaged RF MEMS switches and utilizes a two-layer structure that effectively isolates the cavity filter from the RF MEMS switch circuitry. The two-pole filter(More)
—A new broadband low-noise amplifier (LNA) is proposed in this paper. The LNA utilizes a composite NMOS/PMOS cross-coupled transistor pair to increase the amplification while reducing the noise figure. The introduced approach provides partial cancellation of noise generated by the input transistors, hence, lowering the overall noise figure.
—In this paper, a CMOS on-chip sensor is presented to detect dielectric constant of organic chemicals. The dielectric constant of these chemicals is measured using the oscillation frequency shift of an LC voltage-controlled oscillator (VCO) upon the change of the tank capacitance when exposed to the liquid. To make the system self-sustained, the VCO is(More)
This paper presents a state-of-the-art RF microelectromechanical systems (MEMS) wide-band tunable filter designed for the 12-18-GHz frequency range. The coplanar-waveguide filter, fabricated on a glass substrate using loaded resonators with RF MEMS capacitive switches, results in a tuning range of 40% with very fine resolution, and return loss better than(More)
—A low drop-out (LDO) regulator with a feed-forward ripple cancellation (FFRC) technique is proposed in this paper. The FFRC-LDO achieves a high power-supply rejection (PSR) over a wide frequency range. Complete analysis and design steps of the FFRC-LDO are presented in this paper. Kelvin connection is also used to increase the gain–bandwidth of the LDO(More)
A reconfigurable low-noise amplifier (LNA) with tunable input matching network is proposed. The tunable input matching network provides continuous tuning of the input resonant circuit. The LNA is implemented using 0.13-mum CMOS technology. The amplifier has a tuning range of 1.9-2.4 GHz with an input return loss better than -13 dB. The LNA has a measured(More)
—This paper presents a 23–32 GHz wideband BiCMOS low-noise amplifier (LNA). The LNA utilizes coupled-resonators to provide a wideband load. To our knowledge, the proposed LNA achieves the widest bandwidth with minimum power consumption using 0.18 m BiCMOS technology in K-band. Analytical expressions for the wideband input matching, gain, noise figure and(More)
A wideband low-noise amplifier (LNA), which is a key block in the design of broadband receivers for multiband wireless communication standards, is presented in this paper. The LNA is a fully differential common-gate structure. It uses multiple feedback paths, which add degrees of freedom in the choice of the LNA transconductance to reduce the noise figure(More)