Kamila Réblová

Learn More
Cyphellophora and Phialophora (Chaetothyriales, Pezizomycota) comprise species known from skin infections of humans and animals and from a variety of environmental sources. These fungi were studied based on the comparison of cultural and morphological features and phylogenetic analyses of five nuclear loci, i.e., internal transcribed spacer rDNA operon(More)
Ribozymes are catalytically competent examples of highly structured noncoding RNAs, which are ubiquitous in the processing and regulation of genetic information. Combining explicit-solvent molecular dynamics simulation and single molecule fluorescence spectroscopy approaches, we find that a ribozyme from a subviral plant pathogen exhibits a coupled hydrogen(More)
Molecular dynamics (MD) simulations were employed to investigate the structure, dynamics, and local base-pair step deformability of the free 16S ribosomal helix 44 from Thermus thermophilus and of a canonical A-RNA double helix. While helix 44 is bent in the crystal structure of the small ribosomal subunit, the simulated helix 44 is intrinsically straight.(More)
Explicit solvent molecular dynamics simulations (in total almost 800 ns including locally enhanced sampling runs) were applied with different ion conditions and with two force fields (AMBER and CHARMM) to characterize typical geometries adopted by the flanking bases in the RNA kissing-loop complexes. We focus on flanking base positions in multiple x-ray and(More)
Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron. Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems.(More)
In a case study of fungi of the class Sordariomycetes, we evaluated the effect of multiple sequence alignment (MSA) on the reliability of the phylogenetic trees, topology and confidence of major phylogenetic clades. We compared two main approaches for constructing MSA based on (1) the knowledge of the secondary (2D) structure of ribosomal RNA (rRNA) genes,(More)
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of(More)
Explicit solvent and counterion molecular dynamics simulations have been carried out for a total of >80 ns on the bacterial and spinach chloroplast 5S rRNA Loop E motifs. The Loop E sequences form unique duplex architectures composed of seven consecutive non-Watson-Crick basepairs. The starting structure of spinach chloroplast Loop E was modeled using(More)
The presence of Kink-turns (Kt) at key functional sites in the ribosome (e.g., A-site finger and L7/L12 stalk) suggests that some Kink-turns can confer flexibility on RNA protuberances that regulate the traversal of tRNAs during translocation. Explicit solvent molecular dynamics demonstrates that Kink-turns can act as flexible molecular elbows. Kink-turns(More)
Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in "V" shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to(More)