Learn More
Synthesis of a new asymmetric bisquaternary reactivator of tabun-inhibited acetylcholinesterase-1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide is described. Reactivation potency of this oxime is compared to the currently used reactivators-pralidoxime, obidoxime and H-oxime HI-6.
Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen(More)
Basic part of the current standard treatment of organophosphate (OP) agent poisoning is administration of cholinesterase reactivators. It includes different types of oximes with a similar basic structure differing by the number of pyridinium rings and by the position of the oxime group in the pyridinium ring. Oximes hydrolytically cleave the(More)
In search for more efficacious reactivators of acetylcholinesterase (AChE) inhibited by organophosphorus compounds, experimental K-oximes have been synthesized which show good in vitro efficacy. However, AChE inhibition by oximes themselves (as quantified by their intrinsic IC50) is the major cause of oxime toxicity and the dose-limiting factor. To assess(More)
Trichothecenes are a large family of structurally related toxins mainly produced by Fusarium genus. Among the trichothecenes, T-2 toxin and deoxynivalenol (DON) cause the most concern due to their wide distribution and highly toxic nature. Trichothecenes are known for their inhibitory effect on eukaryotic protein synthesis, and oxidative stress is one of(More)
Nerve agents (sarin, soman, cyclosarin, tabun and VX agent) and pesticides (paraoxon, chlorpyrifos, TEPP) represent extremely toxic group of organophosphorus compounds (OPCs). These compounds inhibit enzyme acetylcholinesterase (AChE, EC 3.1.1.7) via its phosphorylation or phosphonylation at the serine hydroxy group in its active site. Afterwards, AChE is(More)
The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system,(More)
The serine hydrolases and proteases are a ubiquitous group of enzymes that is fundamental to many critical life-functions. Human tissues have two distinct cholinesterase activities: acetylcholinesterase and butyrylcholinesterase. Acetylcholinesterase functions in the transmission of nerve impulses, whereas the physiological function of butyrylcholinesterase(More)
The efficacy of a new bispyridinium oxime 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide, called K048, and currently used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. The new oxime K048 was(More)
Oximes are enzyme reactivators used in treating poisoning with organophosphorus cholinesterase (AChE) inhibitors. The oxime dose which can be safely administered is limited by the intrinsic toxicity of the substances such as their own AChE-inhibiting tendency. Clinical experience with the available oximes is disappointing. To meet this need, new AChE(More)