Learn More
We report on careful implementations of seven algorithms for solving the problem of finding a maximum transversal of a sparse matrix. We analyze the algorithms and discuss the design choices. To the best of our knowledge, this is the most comprehensive comparison of maximum transversal algorithms based on augmenting paths. Previous papers with the same(More)
Intel Xeon Phi is a recently released high-performance coprocessor which features 61 cores each supporting 4 hardware threads with 512-bit wide SIMD registers achieving a peak theoretical performance of 1Tflop/s in double precision. Many scientific applications involve operations on large sparse matrices such as linear solvers, eigensolver, and graph mining(More)
The betweenness centrality metric has always been intriguing for graph analyses and used in various applications. Yet, it is one of the most computationally expensive kernels in graph mining. In this work, we investigate a set of techniques to make the betweenness centrality computations faster on GPUs as well as on heterogeneous CPU/GPU architectures. Our(More)
We consider the problem of scheduling an application on a computing system consisting of heterogeneous processors and data repositories. The application consists of a large number of file-sharing otherwise independent tasks. The files initially reside on the repositories. The processors and the repositories are connected through a heterogeneous(More)
The scheduling of independent but file-sharing tasks on heterogeneous master-slave platforms has recently found important applications in grid environments. The scheduling heuristics recently proposed for this problem are all constructive in nature and based on a common greedy criterion which depends on the momentary completion time values of the tasks. We(More)
In this paper, we investigate how to achieve verifiable secret sharing (VSS) schemes by using the Chinese Remainder Theorem (CRT). We first show that two schemes proposed earlier are not secure by an attack where the dealer is able to distribute inconsistent shares to the users. Then we propose a new VSS scheme based on the CRT and prove its security. Using(More)
The literature search has always been an important part of an academic research. It greatly helps to improve the quality of the research process and output, and increase the efficiency of the researchers in terms of their novel contribution to science. As the number of published papers increases every year, a manual search becomes more exhaustive even with(More)
The problem of task assignment in heterogeneous computing systems has been studied for many years with many variations. We consider the version in which communicating tasks are to be assigned to heterogeneous processors with identical communication links to minimize the sum of the total execution and communication costs. Our contributions are three fold: a(More)
In this paper, we investigate how threshold cryptography can be conducted with the Asmuth-Bloom secret sharing scheme and present three novel function sharing schemes for RSA, ElGamal and Paillier cryptosystems. To the best of our knowledge, these are the first provably secure threshold cryptosystems realized using the Asmuth-Bloom secret sharing. Proposed(More)
The betweenness metric has always been intriguing and used in many analyses. Yet, it is one of the most computationally expensive kernels in graph mining. For that reason, making betweenness centrality computations faster is an important and well-studied problem. In this work, we propose the framework, BADIOS, which compresses a network and shatters it into(More)