Kamel Soudani

Learn More
The increasing number of sensor types for terrestrial remote sensing has necessitated supplementary efforts to evaluate and standardize data from the different available sensors. In this study, we assess the potential use of IKONOS, ETM+, and SPOT HRVIR sensors for leaf area index (LAI) estimation in forest stands. In situ measurements of LAI in 28(More)
The use of the photochemical reflectance index (PRI) as a promising proxy of light use efficiency (LUE) has been extensively studied, and some issues have been identified, notably the sensitivity of PRI to leaf pigment composition and the variability in PRI response to LUE because of stress. In this study, we introduce a method that enables us to track the(More)
We evaluated annual productivity and carbon fluxes over the Fontainebleau forest, a large heterogeneous forest region of 17,000 ha, in terms of species composition, canopy structure, stand age, soil type and water and mineral resources. The model is a physiological process-based forest ecosystem model coupled with an allocation model and a soil model. The(More)
The sensitivity of the photochemical reflectance index (PRI) to leaf pigmentation and its impacts on its potential as a proxy for light-use efficiency (LUE) have recently been shown to be problematic at the leaf scale. Most leaf-to-leaf and seasonal variability can be explained by such a confounding effect. This study relies on the analysis of PRI light(More)
The carbon isotope composition of the CO2 efflux (δ13CE) from ecosystem components is widely used to investigate carbon cycles and budgets at different ecosystem scales. δ13CE, was considered constant but is now known to vary along seasons. The seasonal variations have rarely been compared among different ecosystem components. We aimed to characterise(More)
BACKGROUND AND AIMS The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented(More)
Disentangling the autotrophic and heterotrophic components of soil CO2 efflux is critical to understanding the role of soil system in terrestrial carbon (C) cycling. In this study, we combined a stable C-isotope natural abundance approach with the trenched plot method to determine if root exclusion significantly affected the isotopic composition (δ13C) of(More)
Based on inversion of gap fraction data (Poisson model of foliage distribution), three optical methods using the Demon, the Plant Canopy Analyzer LAI-2000 (PCA) and hemispherical photographs, have been compared to estimate canopy openness (CO) and leaf area index (LAI) in a mature, neutrophil, oak-beech-hornbeam forest on mull in eastern France. Mean CO(More)
Vegetation phenology is the chronology of periodic phases of development. It constitutes an efficient bio-indicator of impacts of climate changes and a key parameter for understanding and modelling vegetation-climate interactions and their implications on carbon cycling. Numerous studies were devoted to the remote sensing of vegetation phenology. Most of(More)