Kamaruzarnan Ampon

Learn More
A strain of protease-producing Bacillus stearothermophilus has been isolated. Glycerol was the best carbon source for production whereas yeast extract was the best nitrogen source. The bacterium could grow up to 70°C but optimum protease production was at 60°C. Best initial pH for protease production was 5. Alkaline pH inhibited production. The enzyme was(More)
Two strains ofRhizopus rhizopodiformis that produced lipases in broth culture were isolated. Maximum lipase production (23 U/ml) was obtained after 72 h culture. Both the crude lipases were stable at 50°C for 30 min and at 45°C for 24 h. Maltose was the best carbon source and peptone the best nitrogen source for the production of lipases. Only glycerol and(More)
A new method is described for the immobilization of biologically active proteins onto several types of organic polymer beads. First, the soluble protein is modified by reaction with an excess of a hydrophobic imidoester, for example methyl 4-phenyl-butyrimidate, at ca. pH 9 and 0 degrees . Excess imidoester and side products resulting from imidoester(More)
A mixture of Ti(IV) and 4-(2-pyridylazo) resorcinol was found to be useful in the spectrophotometric determination of trace amounts of hydrogen peroxide. The absorbance of the complex formed at 508 nm was proportional to the concentration ofhydrogen peroxide added. The reagent was applied to the assay ofglucose through coupling with glucose oxidase which(More)
Trypsin has been immobilized by adsorption onto Amberlite XAD-7 beads. The Michaelis constant (Km) of the enzyme was increased about sevenfold following the immobilization. Its rate of penetration into the porous beads was determined by staining the beads, which had been split, with naphthol blue black. The extent of diffusional rate limitation of(More)
A simple and effective method of lipase immobilization is described. Lipase from Candida rugosa was first modified with several hydrophobic modifiers before being adsorbed on to organic polymer beads. The soluble hydrophobic lipase derivatives adsorbed more strongly on to the various polymers as compared with the native lipase. The optimal adsorption(More)
  • 1