Kamalakanta Behera

  • Citations Per Year
Learn More
Spectroscopic responses of absorbance probes, betaine dye 33, N,N-diethyl-4-nitroaniline, and 4-nitroaniline, and fluorescence dipolarity probes, pyrene (Py) and pyrene-1-carboxaldehyde (PyCHO) within ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and aqueous(More)
Altering and modifying important physicochemical properties of aqueous surfactant solutions is highly desirable as far as potential applications of such systems are concerned. Changes in the properties of aqueous solutions of a common anionic surfactant sodium dodecyl sulfate (SDS) are assessed in the presence of a common and popular 'hydrophobic' ionic(More)
The impact of long term organic amendments on the functional microbial activities, soil carbon (C) storage in relation to greenhouse gas (GHG) emission from rice field was investigated in a tropical Aeric Endoaquept. The treatments included unamended control, farmyard manure (FYM), green manure (GM) (Sesbania aculeata), FYM + GM and rice straw (RS) + GM(More)
Understanding the effect of external additives on the properties of aqueous surfactant solutions is of utmost importance due to widespread applications of surfactant-based systems. Role of ionic liquids (ILs) in this regard may turn out to be crucial as these substances are known to possess unusual properties. To unambiguously understand and establish the(More)
Modifying properties of aqueous surfactant solutions by addition of external additives is an important area of research. Unusual properties of ionic liquids (ILs) make them ideal candidates for this purpose. Changes in important physicochemical properties of aqueous zwitterionic N-dodecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (SB-12) surfactant(More)
Modifying physicochemical properties of aqueous surfactant solutions in favorable fashion by addition of environmentally benign room-temperature ionic liquids (ILs) has enormous future potential. Due to its unusual properties, an IL may demonstrate a unique role in altering the properties of aqueous surfactant solutions. Changes in the properties of aqueous(More)
Room temperature ionic liquids (ILs) may have enormous potential as far as modifying the properties of aqueous surfactant solutions is concerned. A comparative study on the changes in the physicochemical properties of aqueous solution of a commonly used zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB-12) in the presence of up(More)
Addition of ionic liquids to aqueous surfactant solutions can alter/modify physicochemical properties of such systems in favorable manner. Changes in the properties of aqueous solutions of a useful nonionic surfactant Triton X-100 (TX-100) are assessed upon addition of 2.1 wt% of a common and popular ionic liquid 1-butyl-3-methylimidazolium(More)
The behavior of an ionic liquid (IL) within aqueous micellar solutions is governed by its unique property to act as both an electrolyte and a cosolvent. The influence of the surfactant structure on the properties of aqueous micellar solutions of zwitterionic SB-12, nonionic Brij-35 and TX-100, and anionic sodium dodecyl sulfate (SDS) in the presence of the(More)
Modification of important physicochemical properties of aqueous surfactant solutions can be achieved by addition of environmentally benign room temperature ionic liquids (ILs). While low aqueous solubility of "hydrophobic" ILs limits the amount of IL that may be added to achieve desired changes in the physicochemical properties, hydrophilic ILs do not have(More)