Learn More
We have constructed a gigapixel resolution display that offers a full 360 • horizontal field-of-view. This system, called the Reality Deck, is the world's most expansive large-format display and it is the largest resolution display ever built. It utilizes 416 LCD panels at 2560 × 1440 resolution each, for a combined resolution of more than 1.5 gigapixels.(More)
In Virtual Reality, immersive systems such as the CAVE provide an important tool for the collaborative exploration of large 3D data. Unlike head-mounted displays, these systems are often only partially immersive due to space, access, or cost constraints. The resulting loss of visual information becomes a major obstacle for critical tasks that need to(More)
The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared(More)
We present a novel custom-built 3D immersive environment, called the Immersive Cabin (IC). The IC is fully enclosed with an automatic door on the rear screen, and thus very different from existing CAVE environments. Our IC, the construction of the projection screens and stereo projectors as well as the calibration procedure are explained in details. The(More)
The Reality Deck is a visualization facility offering state-of-the-art aggregate resolution and immersion. Its a 1.5-Gpixel immersive tiled display with a full 360-degree horizontal field of view. Comprising 416 high-density LED-backlit LCD displays, it visualizes gigapixel-resolution data while providing 20/20 visual acuity for most of the visualization(More)
We introduce a novel remote volume rendering pipeline for medical visualization targeted for mHealth (mobile health) applications. The necessity of such a pipeline stems from the large size of the medical imaging data produced by current CT and MRI scanners with respect to the complexity of the volumetric rendering algorithms. For example, the resolution of(More)
We introduce the concept of the infinite canvas as a metaphor for the immersive visual exploration of very large image datasets using a natural walking interface. The interface allows the user to move along the display surface and to be continuously exposed to new data, essentially exploring the horizontal axis of an arbitrarily long canvas. Our system(More)
Current immersive VR systems such as the CAVE provide an effective platform for the immersive exploration of large 3D data. A major limitation is that in most cases at least one display surface is missing due to space, access or cost constraints. This partially-immersive visualization results in a substantial loss of visual information that may be(More)
We have developed a novel visualization system based on the reconstruction of high resolution and high frame rate images from a multi-tiered stream of samples that are rendered framelessly. This decoupling of the rendering system from the display system is particularly suitable when dealing with very high resolution displays or expensive rendering(More)