Kalkena Sivanesam

Learn More
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent(More)
Versions of a previously discovered β-hairpin peptide inhibitor of IAPP aggregation that are stabilized in that conformation, or even forced to remain in the hairpin conformation by a backbone cyclization constraint, display superior activity as inhibitors. The cyclized hairpin, cyclo-WW2, displays inhibitory activity at substoichiometric concentrations(More)
The prokaryotic ubiquitin-like protein (Pup)-based proteasomal system in the pathogen Mycobacterium tuberculosis (Mtb) is essential for its survival in a mammalian host. The Pup ligase enzyme, PafA, conjugates Pup to a suite of proteins targeted for proteasomal degradation and is necessary for persistent infection by Mtb. We report the design and(More)
Many naturally occurring antimicrobial peptides (AMPs) are amphipathic with a β-hairpin conformation stabilized by cross-strand disulfides across the associated β-strands. Here, we show that the disulfides are not essential. Other structuring means such as better β-turns and noncovalent cross-strand interactions can, with proper design, replace the(More)
To date, fragments from within the amyloidogenic-patch region of human amylin (hAM) have been shown to aggregate independently of the full-length peptide. In this study, we show that under certain conditions, both oligomers of NFGAILSS and the monomeric form are capable of inhibiting the aggregation of the full-length hAM sequence. The inhibition, rather(More)
Alpha-Synuclein is found in the neuronal cells but its native function is not well known. While α -synuclein is an intrinsically disordered protein that adopts a helical conformation upon membrane binding, numerous studies have shown that oligomeric β-forms of this protein are cytotoxic. This response to misfolded species contributes to Parkinson's Disease(More)
  • 1