Learn More
Angiogenesis is an important phenomenon involved in normal growth and wound healing processes. An imbalance of the growth factors involved in this process, however, causes the acceleration of several diseases including malignant, ocular, and inflammatory diseases. Inhibiting angiogenesis through interfering in its pathway is a promising methodology to(More)
The application of nanoscale materials and structures, usually ranging from 1 to 100 nanometers (nm), is an emerging area of nanoscience and nanotechnology. Nanomaterials may provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water-treatment. The development of techniques for the(More)
Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had(More)
Nanomedicine concerns the use of precision-engineered nanomaterials to develop novel therapeutic and diagnostic modalities for human use. The present study demonstrates the efficacy of biologically synthesized silver nanoparticles (AgNPs) as an antitumor agent using Dalton's lymphoma ascites (DLA) cell lines in vitro and in vivo. The AgNPs showed dose-(More)
Angiogenesis, the growth of new blood vessels from pre-existing vasculature is of physiological and pathological importance. We have investigated the anti-angiogenic potential of silver nanoparticles, produced by Bacillus licheniformis. Bovine retinal endothelial cells (BRECs) were treated with the different concentrations of silver nanoparticles for 24 h(More)
The aim of this study is to determine the effects of silver nanoparticles (Ag-NP) on vascular endothelial growth factor (VEGF)-and interleukin-1 beta (IL-1beta)-induced vascular permeability, and to detect the underlying signaling mechanisms involved in endothelial cells. Porcine retinal endothelial cells (PRECs) were exposed to VEGF, IL-1beta and Ag-NP at(More)
Biosurfactants are worthful microbial amphiphilic molecules with efficient surface-active and biological properties applicable to several industries and processes. Among them lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. A heavy metal tolerant Bacillus strain has been isolated(More)
Silver nitrate imparts different functions on bacteria depending upon its concentration. At lower concentration it induced synthesis of nanoparticles, whereas at higher concentrations it induced cell death. Bacillus licheniformis was used as model system. The MIC was 5 mM, and it induced catalase production, apoptotic body formation and DNA fragmentation.
Here an attempt was made to biologically synthesize fluorescent cadmium sulfide nanoparticles and to immobilize the synthesized nanoparticles in PHB nanoparticles. The present study uses Brevibacterium casei SRKP2 as a potential producer for the green synthesis of CdS nanoparticles. Biologically synthesized nanoparticles were characterized and confirmed(More)
A gram positive bacterium (designated strain SRKP-3) that potentially accumulated polyhydroxyalkanoates (PHAs) was isolated from brackish water. From its morphological and physiological properties and nucleotide sequence of its 16S rRNA, it was suggested that strain SRKP-3 was similar to Bacillus megaterium. A four-factor central composite rotary design(More)