Learn More
Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent(More)
The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These(More)
LFY and its orthologues are necessary for flower specification in diverse dicotyledonous plants. The spatial and temporal RNA expression pattern of a rice LFY-like gene: RFL differs significantly from that in several other species studied thus far. The onset of RFL expression coincides with inflorescence meristem (panicle meristem) initiation, and continues(More)
Despite their pivotal role in plant development, control mechanisms for oriented cell divisions have remained elusive. Here, we describe how a precisely regulated cell division orientation switch in an Arabidopsis stem cell is controlled by upstream patterning factors. We show that the stem cell regulatory PLETHORA transcription factors induce division(More)
During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions.(More)
Studies of floral organ development in two dicotyledonous plants, Arabidopsis thaliana and Antirrhinum majus, have shown that three sets of genes (A, B and C) can pattern sepals, petals, stamens and carpels [1] [2]. Mechanisms that define boundaries between these floral whorls are unclear, however. The Arabidopsis gene SUPERMAN (SUP), which encodes a(More)
BACKGROUND The juxtaposition of newly formed primordia in the root and shoot differs greatly, but their formation in both contexts depends on local accumulation of the signaling molecule auxin. Whether the spacing of lateral roots along the main root and the arrangement of leaf primordia at the plant apex are controlled by related underlying mechanisms has(More)
Regeneration, a remarkable example of developmental plasticity displayed by both plants and animals, involves successive developmental events driven in response to environmental cues. Despite decades of study on the ability of the plant tissues to regenerate a complete fertile shoot system after inductive cues, the mechanisms by which cells acquire(More)
The ability to regenerate is widely exploited by multitudes of organisms ranging from unicellular bacteria to multicellular plants for their propagation and repair. But the levels of competence for regeneration vary from species to species. While variety of living cells of a plant display regeneration ability, only a few set of cells maintain their stemness(More)
Plants have the remarkable property to elaborate entire body plan from any tissue part. The conversion of lateral root primordium (LRP) to shoot is an ideal method for plant propagation and for plant researchers to understand the mechanism underlying trans-differentiation. Until now, however, a robust method that allows the efficient conversion of LRP to(More)