Kalai Mathee

Learn More
One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis(More)
Quorum sensing (QS) is a key regulator of virulence and biofilm formation in Pseudomonas aeruginosa and other medically relevant bacteria. Aqueous extracts of six plants, Conocarpus erectus, Chamaesyce hypericifolia, Callistemon viminalis, Bucida buceras, Tetrazygia bicolor, and Quercus virginiana, were examined in this study for their effects on P.(More)
The leading cause of mortality in patients with cystic fibrosis (CF) is respiratory failure due in large part to chronic lung infection with Pseudomonas aeruginosa strains that undergo mucoid conversion, display a biofilm mode of growth in vivo and resist the infiltration of polymorphonuclear leukocytes (PMNs), which release free oxygen radicals such as(More)
Bacterial intercellular communication, or quorum sensing (QS), controls the pathogenesis of many medically important organisms. Anti-QS compounds are known to exist in marine algae and have the ability to attenuate bacterial pathogenicity. We hypothesized that terrestrial plants traditionally used as medicines may also produce anti-QS compounds. To test(More)
Pseudomonas aeruginosa strains associated with cystic fibrosis are often mucoid due to the copious production of alginate, an exopolysaccharide and virulence factor. Alginate gene expression is transcriptionally controlled by a gene cluster at 68 min on the chromosome: algT (algU)-mucA-mucB (algN)-mucC (algM)-mucD (algY). The algT gene encodes a 22-kDa(More)
The pathogenesis of Pseudomonas aeruginosa is associated with expression of virulence factors, many of which are controlled by two N:-acylhomoserine lactone (AHL)-based quorum-sensing systems. Escherichia coli strains equipped with a luxR-based monitor system expressing green fluorescent protein (GFP) in the presence of exogenous AHL molecules were used to(More)
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of(More)
To understand the importance of quorum sensing in chronic Pseudomonas aeruginosa lung infection, the in vivo pathogenic effects of the wild-type P. aeruginosa PAO1 and its double mutant, PAO1 lasI rhlI, in which the signal-generating parts of the quorum sensing systems are defective were compared. The rat model of P. aeruginosa lung infection was used in(More)
Transcription of bacteriophage Mu occurs in a regulatory cascade consisting of three phases: early, middle, and late. The 1.2-kb middle transcript is initiated at Pm and encodes the C protein, the activator of late transcription. A plasmid containing a Pm-lacZ operon fusion was constructed. beta-Galactosidase expression from the plasmid increased 23-fold(More)
Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by(More)