Learn More
HtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although(More)
We have examined the folding and assembly of a catalytically inactive mutant of procaspase-3, a homodimeric protein that belongs to the caspase family of proteases. The caspase family, and especially caspase-3, is integral to apoptosis. The equilibrium unfolding data demonstrate a plateau between 3 and 5 M urea, consistent with an apparent three-state(More)
We have examined the enzymatic activity of an uncleavable procaspase-3 mutant (D9A/D28A/D175A), which contains the wild-type catalytic residues in the active site. The results are compared to those for the mature caspase-3. Although at pH 7.5 and 25 degrees C the K(m) values are similar, the catalytic efficiency (k(cat)) is approximately 130-fold lower in(More)
In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is(More)
We have investigated the oligomeric properties of procaspase-3 and a mutant that lacks the pro-domain (called pro-less variant). In addition, we have examined the interactions of the 28 amino acid pro-peptide when added in trans to the pro-less variant. By sedimentation equilibrium studies, we have found that procapase-3 is a stable dimer in solution at 25(More)
pH-dependent conformational changes are known to occur in dimeric procaspase-3, and they have been shown to affect the rate of automaturation. We studied the equilibrium unfolding of procaspase-3(C163S) as a function of pH (between pH 8.5 and pH 4) in order to examine these changes in the context of folding and stability. The data show that the procaspase(More)
Neocarzinostatin (NCS) induces alkali-labile sites in DNA which are stabilized by NaBH4 reduction. The stabilized sites are sensitive to an AP endonuclease from human lymphoma cells. NCS-induced degradation of supercoiled Col E1 DNA proceeds in stepwise fashion with apurinic/apyrimidinic (AP) sites as intermediates. Degradation is increased when reaction(More)