Kaiyan Lou

  • Citations Per Year
Learn More
Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell(More)
Synthetic triptycene analogs (TT code number) mimic the antitumor effects of daunorubicin (DAU) in vitro, but have the advantage of blocking nucleoside transport, inhibiting both DNA topoisomerase I and II activities, and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones induce poly(ADP-ribose) polymerase-1 (PARP-1)(More)
Since synthetic analogs of 1,4-anthraquinone (AQ code number), such as AQ8, AQ9 and AQ10, can trigger cytochrome c release without caspase activation and retain their ability to induce apoptosis in multidrug-resistant (MDR) tumor cells, fluorescent probes of transmembrane potential have been used to determine whether these anti-tumor compounds might(More)
Since synthetic analogs of triptycene (TT code number), such as bisquinones TT2 and TT13, can trigger cytochrome c release without caspase activation and retain their ability to induce apoptosis in multidrug-resistant (MDR) tumor cells, fluorescent probes of transmembrane potential have been used to determine whether these antitumor compounds might directly(More)
BACKGROUND Substituted triptycenes (TT code number), which block nucleoside transport, macromolecule syntheses and DNA topoisomerase activities, induce cytochrome c release and apoptotic DNA fragmentation, inhibit the proliferation of drug-sensitive and -resistant tumor cells in the nM range in vitro and rapidly trigger the collapse of mitochondrial(More)
Novel substituted triptycene bisquinones and 1, 4-anthracenediones were synthesized and screened for their anti-cancer activities. A number of analogs were synthesized utilizing various synthetic transformations and found to elicit interesting antitumor effects. Analogs included water-soluble pro-drugs and ammonium salts. These potent antitumor drugs are(More)
Synthetic analogs of 1,4-anthraquinone (AQ code number), which block nucleoside transport, decrease DNA, RNA and protein syntheses, trigger cytochrome c release without caspase activation, induce apoptotic DNA fragmentation and inhibit the proliferation of wild-type and multidrug resistant tumor cells in the nM range in vitro, rapidly cause the collapse of(More)
Total syntheses of (+/-)-ovalicin, its C4(S( *))-isomer 44, and C5-side chain intermediate 46 were accomplished via an intramolecular Heck reaction of (Z)-3-(tert-butyldimethylsilyloxy)-1-iodo-1,6-heptadiene and a catalytic amount of palladium acetate. Subsequent epoxidation, dihydroxylation, methylation, and oxidation led to (3S( *),5R( *),6R((More)
d-Eritadenine (DEA) is a potent inhibitor of S-adenosyl-l-homocysteine hydrolase (SAHH) and has hypocholesterolemic activity. We have hypothesized that 3-deaza-DEA (C3-DEA) and its analogues retain high level of SAHH inhibitory activity and have resistance to deamination and glycosidic bond hydrolysis in vivo. Such C3-DEA analogues would have much higher(More)
Cycloiptycenes are elusive and synthetically challenging molecules. We report the first synthesis of two substituted cyclododeciptycene tetraquinones via a sequence of intermolecular and intramolecular Diels-Alder reactions from cis,cis-heptiptycene tetraquinone 2 and substituted 7,16-dihydro-7,16-(o-benzeno)heptacenes 3. Heptiptycene tetraquinone 2 was(More)