Kaitai Zhang

Learn More
Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and(More)
A tumor can be viewed as a special "organ" that undergoes aberrant and poorly regulated organogenesis. Progress in cancer prognosis and therapy might be facilitated by re-examining distinctive processes that operate during normal development, to elucidate the intrinsic features of cancer that are significantly obscured by its heterogeneity. The global gene(More)
Similarities in gene expression between both developing embryonic and precancerous tissues and cancer tissues may help identify much-needed biomarkers and therapeutic targets in lung squamous carcinoma. In this study, human lung samples representing ten successive time points, from embryonic development to carcinogenesis, were used to construct global gene(More)
Structural maintenance of chromosome 4 (SMC4) is a core subunit of condensin complexes that mainly contributes to chromosome condensation and segregation. Our previous study demonstrated that the gene expression profile during lung development is of great values for the study of lung cancer. In this study, we identified SMC4 through co-expression network(More)
Crosstalk between RNAs mediated by shared microRNAs (miRNAs) represents a novel layer of gene regulation, which plays important roles in development. In this study, we analyzed time series expression data for coding genes and long non-coding RNAs (lncRNAs) to identify thousands of interactions among competitive endogenous RNAs (ceRNAs) in four rhesus(More)
Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the(More)
  • 1