• Publications
  • Influence
Deep Residual Learning for Image Recognition
This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Mask R-CNN
This work presents a conceptually simple, flexible, and general framework for object instance segmentation that outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.
Feature Pyramid Networks for Object Detection
This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Focal Loss for Dense Object Detection
This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Identity Mappings in Deep Residual Networks
The propagation formulations behind the residual building blocks suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation.
Aggregated Residual Transformations for Deep Neural Networks
On the ImageNet-1K dataset, it is empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy and is more effective than going deeper or wider when the authors increase the capacity.
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Momentum Contrast for Unsupervised Visual Representation Learning
We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a
Image Super-Resolution Using Deep Convolutional Networks
We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep