Learn More
In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%,(More)
The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement(More)
Most of SERS applications are constricted by heterogeneous hotspots and aggregates of nanostructure, which result in low sensitivity and poor reproducibility of characteristic signals. This work intends to introduce SERS properties of a type of SERS-active substrate, Au-CuCl2-AAO, which is innovatively developed on a porous anodic alumina oxide (AAO)(More)
In this study, we compared ex-situ catalytic pyrolysis (CP) and in-situ CP of hybrid poplar in a micro-reactor system. When both pyrolysis and catalysis were performed at 700 °C, the carbon yield of olefins was greater for ex-situ CP than for in-situ CP (17.4% vs. 5.4%). On the other hand, in-situ CP produced more aromatic hydrocarbons than ex-situ CP(More)
Confocal Raman microspectral imaging (CRMI) provides a versatile tool to illustrate the biochemical nature and structure of biological tissue without introducing any external labels. In this work, a precise correlation was established between the biochemical profile and histological architecture of ex vivo human spinal cord tissue by using CRMI with 633nm(More)
Stretching and manipulating DNA efficiently is significant for exploring the properties and applications of single DNA molecules. Here, the influence of concentrations of buffer and DNA on properties of stretched DNA molecules in the molecular evaporation combing (MEC) is investigated systematically with the single molecule fluorescence imaging microscopy(More)
Concerns over increasing amounts of sewage sludge and unsustainability of current disposal methods have led to development of alternative routes for sludge management. The large amount of organics in sewage sludge makes it potential feedstock for energy or fuel production via thermochemical pathways. In this study, ex-situ catalytic pyrolysis using HZSM-5(More)
The anodic aluminum oxide (AAO) template with ordered pores was firstly fabricated in oxalic acid solutions using two-step anodization method. Then, a layer of polymethylmethacrylate (PMMA) was uniformly laid on one surface of the AAO template by a Spin-Coater, then baked and cooled them, after that, the H3PO4 solution was utilized to dissolve the residual(More)
Nanoscale functional structures are indispensable elements in many fields of modern science. In this paper, nanopillar array with a pillar diameter far smaller than Abbe's diffraction limit is realized by a new kind of continuous wave (CW) laser direct lithography technology. With atomic force microscopy technology, the average diameter of nanopillars on(More)
In this paper, we report the fabrication of permalloy nanocontact structures with greatly improved surface and edge smoothness. Magnetic sputtering and thermal evaporation were used for metal film deposition, and lift-off and dry etching techniques were employed for nanocontact structure patterning. The compositional properties of the resulting nanocontacts(More)
  • 1