Learn More
GABAergic neurons in the ventral mesodiencephalic region are highly important for the function of dopaminergic pathways that regulate multiple aspects of behavior. However, development of these neurons is poorly understood. We recently showed that molecular regulation of differentiation of the GABAergic neurons associated with the dopaminergic nuclei in the(More)
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene(More)
Understanding cell type identity in a multicellular organism requires the integration of gene expression profiles from individual cells with their spatial location in a particular tissue. Current technologies allow whole-transcriptome sequencing of spatially identified cells but lack the throughput needed to characterize complex tissues. Here we present a(More)
Cell types are composed of cellular modules exerting specific subfunctions. The evolutionary emergence and diversification of these modules can be tracked through the comparative analysis of genomes. Here, we survey recent advances elucidating the origin of neurons, of smooth and striated muscle cells and of the T- and B-cells of the immune system in the(More)
Diverse mechanisms regulate development of GABAergic neurons in different regions of the central nervous system. We have addressed the roles of a proneural gene, Ascl1, and a postmitotic selector gene, Gata2, in the differentiation of GABAergic neuron subpopulations in three diencephalic prosomeres: prethalamus (P3), thalamus (P2) and pretectum (P1).(More)
Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene(More)
Midbrain- and hindbrain-derived GABAergic interneurons are critical for regulation of sleep, respiratory, sensory-motor and motivational processes, and they are implicated in human neurological disorders. However, the precise mechanisms that underlie generation of GABAergic neuron diversity in the midbrain-hindbrain region are poorly understood. Here, we(More)
The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D(More)