Learn More
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene(More)
GABAergic neurons in the ventral mesodiencephalic region are highly important for the function of dopaminergic pathways that regulate multiple aspects of behavior. However, development of these neurons is poorly understood. We recently showed that molecular regulation of differentiation of the GABAergic neurons associated with the dopaminergic nuclei in the(More)
Diverse mechanisms regulate development of GABAergic neurons in different regions of the central nervous system. We have addressed the roles of a proneural gene, Ascl1, and a postmitotic selector gene, Gata2, in the differentiation of GABAergic neuron subpopulations in three diencephalic prosomeres: prethalamus (P3), thalamus (P2) and pretectum (P1).(More)
Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene(More)
Midbrain- and hindbrain-derived GABAergic interneurons are critical for regulation of sleep, respiratory, sensory-motor and motivational processes, and they are implicated in human neurological disorders. However, the precise mechanisms that underlie generation of GABAergic neuron diversity in the midbrain-hindbrain region are poorly understood. Here, we(More)
Serotonergic and glutamatergic neurons of the dorsal raphe regulate many brain functions and are important for mental health. Their functional diversity is based on molecularly distinct subtypes; however, the development of this heterogeneity is poorly understood. We show that the ventral neuroepithelium of mouse anterior hindbrain is divided into specific(More)
  • 1