Learn More
We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT)-incorporated photo-cross-linkable gelatin methacrylate (GelMA) hydrogels. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick(More)
This paper reports the first quantitative comparison study of elastic and viscoelastic properties of oocytes from young and aged mice. A force measurement technique, including a poly(dimethylsiloxane) (PDMS) cell holding device and a sub-pixel computer vision tracking algorithm, is utilized for measuring forces applied to an oocyte and resultant cell(More)
Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)-incorporated gelatin(More)
Microfabrication technology provides a highly versatile platform for engineering hydrogels used in biomedical applications with high-resolution control and injectability. Herein, we present a strategy of microfluidics-assisted fabrication photo-cross-linkable gelatin microgels, coupled with providing protective silica hydrogel layer on the microgel surface(More)
The work of adhesion at the interface of electrospun membrane and rigid substrate is measured by a shaft-loaded blister test (SLBT). Poly(vinylidene fluoride) (PVDF) were electrospun with an average fiber diameter of 333 ± 59 nm. Commercial cardboard with inorganic coating was used to provide a model substrate for adhesion tests. In SLBT, the elastic(More)
In this study, we employed AFM analysis combined with mathematical modeling for quantifying cell-surface contact mechanics and magnitude and range of cell-surface interaction forces for seven bacterial strains with a wide range of cell morphology, dimension, and surface characteristics. Comprehensive cell-surface characterization including surface charge,(More)
When a contact lens is compressed between two parallel plates (PPC) or under a central load (CLC), the constitutive relation depends not only on the mechanical properties such as elastic modulus, E, of the hydrogel materials, but also the lens power, d, or thickness variation, h(ϕ0), along the meridional direction ϕ0. Hyperopic lenses (d>0) are thicker at(More)
It has been demonstrated that there is a mechanochemical relationship between collagen and collagenolytic enzymes such that increased tensile mechanical strain reduces the enzymatic cutting rate. This mechanochemical relationship has the potential to permit directed remodelling of tissue-engineered constructs in vitro and to shed light on the generation of(More)
The physiochemical properties of phospholipid vesicle, e.g. permeability, elasticity, etc., are directly modulated by the chain-melting transition of the lipid bilayer. Currently, there is a lack of understanding in the relationship between thermotropic transition, mechanical deformation and adhesion strength for an adherent vesicle at temperature close to(More)
It has been recently demonstrated that acyl chain mismatch of phospholipid bilayer composed of a binary lipid mixture induces component formation on the lateral plane of the bilayer [Biophys. J. 83 (2002) 1820-1883]. In this report, the contact mechanics of unilamellar vesicles composed of binary dimyristoyl-phosphatidylcholine(More)