Learn More
The study of social networks is a burgeoning research area. However, most existing work is on networks that simply encode whether relationships exist or not. In contrast, relationships in signed networks can be positive (" like " , " trust ") or negative (" dislike " , " distrust "). The theory of social balance shows that signed networks tend to conform to(More)
We consider the problem of link prediction in signed networks. Such networks arise on the web in a variety of ways when users can implicitly or explicitly tag their relationship with other users as positive or negative. The signed links thus created reflect social attitudes of the users towards each other in terms of friendship or trust. Our first(More)
We consider the general $k$-way clustering problem in signed social networks where relationships between entities can be either positive or negative. Motivated by social balance theory, the clustering problem in signed networks aims to find mutually antagonistic groups such that entities within the same group are friends with each other. A recent method(More)
Matrix completion (MC) with additional information has found wide applicability in several machine learning applications. Among algorithms for solving such problems, Inductive Matrix Completion(IMC) has drawn a considerable amount of attention, not only for its well established theoretical guarantees but also for its superior performance in various(More)
The robust principal component analysis (robust PCA) problem has been considered in many machine learning applications, where the goal is to decompose the data matrix to a low rank part plus a sparse residual. While current approaches are developed by only considering the low rank plus sparse structure, in many applications, side information of row and/or(More)
  • 1