Learn More
AIM To develop a C. elegans model of amyotrophic lateral sclerosis (ALS) and to evaluate the role of autophagy in the disease. METHODS Stable transgenic worms expressing the G93A mutant form of Cu,Zn-superoxide dismutase (SOD1) in GABAergic motor neurons were generated. Axon guidance and protein aggregation in the motor neurons were observed with(More)
The mechanism of action of commonly used antidepressants remains an issue of debate. In the experiments reported here we studied the effects of three representative compounds, the selective serotonin reuptake inhibitor fluoxetine, the selective serotonin reuptake enhancer tianeptine and the selective norepinephrine reuptake inhibitor desipramine on the(More)
The impairment of ubiquitin-proteasome system (UPS) is a cellular mechanism underlying the neurodegenerative process in Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent neurotrophic factors promoting the growth and survival of mesencephalic dopamine (DA) neurons. To investigate whether GDNF has(More)
AIM Ubiquitin-proteasome system (UPS) and autophagosome-lysosome pathway (ALP) are the most important machineries responsible for protein degradation in Parkinson's disease (PD). The aim of this study is to investigate the adaptive alterations in autophagy upon proteasome inhibition in dopaminergic neurons in vitro and in vivo. METHODS Human dopaminergic(More)
As autophagy is involved in cell growth, survival, development and death, impaired autophagic flux has been linked to a variety of human pathophysiological processes, including neurodegeneration, cancer, myopathy, cardiovascular and immune-mediated disorders. There is a growing need to identify and quantify the status of autophagic flux in different(More)
  • 1