Learn More
This paper focuses on the problem of word detection and recognition in natural images. The problem is significantly more challenging than reading text in scanned documents, and has only recently gained attention from the computer vision community. Sub-components of the problem, such as text detection and cropped image word recognition, have been studied in(More)
High-throughput sequencing platforms are generating massive amounts of genetic variation data for diverse genomes, but it remains a challenge to pinpoint a small subset of functionally important variants. To fill these unmet needs, we developed the ANNOVAR tool to annotate single nucleotide variants (SNVs) and insertions/deletions, such as examining their(More)
Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD(More)
We present a method for spotting words in the wild, i.e., in real images taken in unconstrained environments. Text found in the wild has a surprising range of difficulty. At one end of the spectrum, Optical Character Recognition (OCR) applied to scanned pages of well formatted printed text is one of the most successful applications of computer vision to(More)
Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis(More)
Published genomewide association (GWA) studies typically analyze and report single-nucleotide polymorphisms (SNPs) and their neighboring genes with the strongest evidence of association (the "most-significant SNPs/genes" approach), while paying little attention to the rest. Borrowing ideas from microarray data analysis, we demonstrate that pathway-based(More)
We introduce novel profile-based string kernels for use with support vector machines (SVMs) for the problems of protein classification and remote homology detection. These kernels use probabilistic profiles, such as those produced by the PSI-BLAST algorithm, to define position-dependent mutation neighborhoods along protein sequences for inexact matching of(More)
The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be(More)
OBJECTIVE To evaluate previously reported associations of copy number variants (CNVs) with schizophrenia and to identify additional associations, the authors analyzed CNVs in the Molecular Genetics of Schizophrenia study (MGS) and additional available data. METHOD After quality control, MGS data for 3,945 subjects with schizophrenia or schizoaffective(More)