Learn More
Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. In this study, we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their(More)
The voltage-dependence of channel formation by alamethicin and it natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts alpha-helical(More)
The Na+-Ca2+ exchanger plays an important role in cardiac contractility by moving Ca2+ across the plasma membrane during excitation-contraction coupling. A 20 amino acid peptide, XIP, synthesized to mimic a region of the exchanger, inhibits exchange activity. We identify here amino acid residues important for inhibitory function. Effects of modified(More)
Time-resolved fluorescence anisotropy (FA) measurements are reported for five helical bilayer-spanning henicosapeptides, each containing one tryptophan at sequence position 1, 6, 11, 16, or 21. The FA decay reflects two molecular processes in all cases: local internal fluctuations of the tryptophan side chain with a relaxation time of 200-500 ps, and(More)
The cerebellum fine-tunes motor activity via its Purkinje cell output. Purkinje cells produce two different types of spikes, complex spikes and simple spikes, which often show reciprocal activity: a periodical increase in complex spikes is associated with a decrease in simple spikes, and vice versa. This reciprocal firing is thought to be essential for(More)
Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which(More)
Inhibition of important degradative pathways of atrial natriuretic peptide (ANP) in vivo could be a valuable therapeutic tool for regulating endogenous levels of ANP. The aim was to investigate the in vivo effects of both blockade of atrial natriuretic peptide clearance receptor and inhibition of neutral endopeptidase 24.11, an enzyme shown to be involved(More)
Compensatory eye movements elicited by head rotation, also known as vestibulo-ocular reflex (VOR), can be adapted with the use of visual feedback. The cerebellum is essential for this type of movement adaptation, but its neuronal correlates remain to be elucidated. Here we show that the direction of vestibular input determines the magnitude of eye movement(More)
The massive computational capacity of the cerebellar cortex is conveyed by Purkinje cells onto cerebellar and vestibular nuclei neurons through their GABAergic, inhibitory output. This implies that pauses in Purkinje cell simple spike activity are potentially instrumental in cerebellar information processing, but their occurrence and extent are still(More)
In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in Purkinje cell (PC) spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here, we show that facial tactile stimuli(More)