Kai Oliver Arras

Learn More
People detection is a key issue for robots and intelligent systems sharing a space with people. Previous works have used cameras and 2D or 3D range finders for this task. In this paper, we present a novel people detection approach for RGB-D data. We take inspiration from the Histogram of Oriented Gradients (HOG) detector to design a robust method to detect(More)
This paper addresses the problem of detecting people in two dimensional range scans. Previous approaches have mostly used pre-defined features for the detection and tracking of people. We propose an approach that utilizes a supervised learning technique to create a classifier that facilitates the detection of people. In particular, our approach applies(More)
For many tasks in populated environments, robots need to keep track of current and future motion states of people. Most approaches to people tracking make weak assumptions on human motion such as constant velocity or acceleration. But even over a short period, human behavior is more complex and influenced by factors such as the intended goal, other people,(More)
A scheme for extracting environment features from 1D range data and their interpretation is presented. Segmentation is done by deciding on a measure of model fidelity which is applied to adjacent groups of measurements. The extraction process is considered to include a subsequent matching step where segments which belong to the same landmark are to be(More)
We present an approach to laser-based people tracking using a multi-hypothesis tracker that detects and tracks legs separately with Kalman filters, constant velocity motion models, and a multi-hypothesis data association strategy. People are defined as high-level tracks consisting of two legs that are found with little model knowledge. We extend the data(More)
Local image features are used for a wide range of applications in computer vision and range imaging. While there is a great variety of detector-descriptor combinations for image data and 3D point clouds, there is no general method readily available for 2D range data. For this reason, the paper first proposes a set of benchmark experiments on detector(More)
People tracking is a key component for robots that are deployed in populated environments. Previous works have used cameras and 2D and 3D range finders for this task. In this paper, we present a 3D people detection and tracking approach using RGB-D data. We combine a novel multi-cue person detector for RGB-D data with an on-line detector that learns(More)
Human activity recognition is a key component for socially enabled robots to effectively and naturally interact with humans. In this paper we exploit the fact that many human activities produce characteristic sounds from which a robot can infer the corresponding actions. We propose a novel recognition approach called Non-Markovian Ensemble Voting (NEV) able(More)