Learn More
Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lis1, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the(More)
How the nuclei in mammalian skeletal muscle fibers properly position themselves relative to the cell body is an interesting and important cell biology question. In the syncytial skeletal muscle cells, more than 100 nuclei are evenly distributed at the periphery of each cell, with 3-8 nuclei anchored beneath the neuromuscular junction (NMJ). Our previous(More)
Nuclear movement relative to cell bodies is a fundamental process during certain aspects of mammalian retinal development. During the generation of photoreceptor cells in the cell division cycle, the nuclei of progenitors oscillate between the apical and basal surfaces of the neuroblastic layer (NBL). This process is termed interkinetic nuclear migration(More)
The DNA damage response (DDR) and DNA repair are critical for maintaining genomic stability and evading many human diseases. Recent findings indicate that accumulation of SUN1, a nuclear envelope (NE) protein, is a significant pathogenic event in Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome, both caused by mutations in LMNA.(More)