Learn More
We present a method, CamShift, for the rapid and accurate prediction of NMR chemical shifts from protein structures. The calculations performed by CamShift are based on an approximate expression of the chemical shifts in terms of polynomial functions of interatomic distances. Since these functions are very fast to compute and readily differentiable, the(More)
This paper presents the Dexterity Network (Dex-Net) 1.0, a dataset of 3D object models and a sampling-based planning algorithm to explore how Cloud Robotics can be used for robust grasp planning. The algorithm uses a Multi- Armed Bandit model with correlated rewards to leverage prior grasps and 3D object models in a growing dataset that currently includes(More)
We introduce a procedure to determine the structures of proteins by incorporating NMR chemical shifts as structural restraints in molecular dynamics simulations. In this approach, the chemical shifts are expressed as differentiable functions of the atomic coordinates and used to compute forces to generate trajectories that lead to the reduction of the(More)
The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster--the common fruit fly--is one of the most well-established model organisms, as its study can be performed more readily and with far less expense than for(More)
Behavioural assays represent sensitive methods for detecting neuronal dysfunction in model organisms. A number of manual methods have been established for Drosophila, however these are time-consuming and generate parameter-poor phenotype descriptors. Here, we have developed an automated computer vision system to monitor accurately the three-dimensional(More)
The twist flexibility of DNA is central to its many biological functions. Explicit solvent molecular dynamics simulations in combination with an umbrella sampling restraining potential have been employed to study induced twist deformations in DNA. Simulations allowed us to extract free energy profiles for twist deformations and were performed on six DNA(More)
In the version of this Article originally published, Figure 4 displayed incorrectly drawn chemical structures for five of the ligands. The correct structures were, however, used in the calculations. The hemiaminal group previously depicted in compounds 2–4 should have been a β-amino alcohol, compound 7 contained an extra benzylic carbon and compound 8 had(More)
  • 1