Kai J. Miller

Learn More
Signals from the brain could provide a non-muscular communication and control system, a brain-computer interface (BCI), for people who are severely paralyzed. A common BCI research strategy begins by decoding kinematic parameters from brain signals recorded during actual arm movement. It has been assumed that these parameters can be derived accurately only(More)
In the first large study of its kind, we quantified changes in electrocorticographic signals associated with motor movement across 22 subjects with subdural electrode arrays placed for identification of seizure foci. Patients underwent a 5-7 d monitoring period with array placement, before seizure focus resection, and during this time they participated in(More)
During active movement the electric potentials measured from the surface of the motor cortex exhibit consistent modulation, revealing two distinguishable processes in the power spectrum. At frequencies <40 Hz, narrow-band power decreases occur with movement over widely distributed cortical areas, while at higher frequencies there are spatially more focal(More)
Recent studies have identified broadband phenomena in the electric potentials produced by the brain. We report the finding of power-law scaling in these signals using subdural electrocorticographic recordings from the surface of human cortex. The power spectral density (PSD) of the electric potential has the power-law form P(f ) approximately Af(-chi) from(More)
Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of(More)
We show here that a brain-computer interface (BCI) using electrocorticographic activity (ECoG) and imagined or overt motor tasks enables humans to control a computer cursor in two dimensions. Over a brief training period of 12-36 min, each of five human subjects acquired substantial control of particular ECoG features recorded from several locations over(More)
Editor's Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see
Brain surface electrocorticographic (ECoG) recordings can investigate human brain electrophysiology at the cortical surface with exceptionally high signal to noise ratio and spatio-temporal resolution. To be able to use the high spatial resolution of ECoG for accurate brain function mapping and neurophysiology studies, the exact location of the ECoG(More)
Neuroimaging-based investigations in humans have established the existence of brain regions that are selectively metabolically active while resting. We report a population-scale neurophysiological measurement of activity in regions of this "default network," by recording high-frequency power (76-200 Hz) electrical potentials directly from these regions in(More)
This paper presents a two-part study investigating the use of forearm surface electromyographic (EMG) signals for real-time control of a robotic arm. In the first part of the study, we explore and extend current classification-based paradigms for myoelectric control to obtain high accuracy (92-98%) on an eight-class offline classification problem, with up(More)