Learn More
In tissue engineering, a highly porous artificial extracellular matrix or scaffold is required to accommodate mammalian cells and guide their growth and tissue regeneration in three dimensions. However, existing three-dimensional scaffolds for tissue engineering proved less than ideal for actual applications, not only because they lack mechanical strength,(More)
The ability to use biological substitutes to repair or replace damaged tissues lead to the development of Tissue Engineering (TE), a field that is growing in scope and importance within biomedical engineering. Anchorage dependent cell types often rely on the use of temporary three-dimensional scaffolds to guide cell proliferation. Computer-controlled(More)
Most tissue engineering (TE) strategies for creating functional replacement tissues or organs rely on the application of temporary three-dimensional scaffolds to guide the proliferation and spread of seeded cells in vitro and in vivo. The characteristics of TE scaffolds are major concerns in the quest to fabricate ideal scaffolds. This paper identifies(More)
Rapid prototyping (RP) techniques are becoming more popular for fabricating tissue engineering (TE) scaffolds owing to their advantages over conventional methods, such as the ability to fabricate scaffolds with predetermined interconnected networks without the use of organic solvents. A versatile RP technique, selective laser sintering (SLS), offers good(More)
An important requirement for a bone tissue engineering scaffold is a stiffness gradient that mimics that of native bone. Such scaffolds can be achieved by controlling their structure and porosity and are termed functionally graded scaffolds (FGS). Currently, the main challenges in FGS fabrication include the iterative and tedious design process as well as a(More)
Selective Laser Sintering (SLS), an established Rapid Prototyping (RP) process, is investigated for building controlled drug delivery devices (DDD). The drug and its matrix in a powder form were first mixed mechanically before being sintered on the SLS. Each cylindrical DDD is designed with a number of concentric rings separated from each other by a(More)
In tissue engineering (TE), temporary three-dimensional scaffolds are essential to guide cell proliferation and to maintain native phenotypes in regenerating biologic tissues or organs. To create the scaffolds, rapid prototyping (RP) techniques are emerging as fabrication techniques of choice as they are capable of overcoming many of the limitations(More)
The growing interest in scaffold-guided tissue engineering (TE) to guide and support cell proliferation in the repair and replacement of craniofacial and joint defects gave rise to the quest for a precise technique to create such scaffolds. Conventional manual-based fabrication techniques have several limitations such as the lack of reproducibility and(More)
An advanced manufacturing technique, selective laser sintering (SLS), was utilized to fabricate a porous polycaprolactone (PCL) scaffold designed with an automated algorithm in a parametric library system named the "computer-aided system for tissue scaffolds" (CASTS). Tensile stiffness of the sintered PCL strut was in the range of 0.43+/-0.15MPa when a(More)
Treatment of esophageal cancer often requires surgical procedures that involve removal. The current approaches to restore esophageal continuity however, are known to have limitations which may not result in full functional recovery. In theory, using a tissue engineered esophagus developed from the patient's own cells to replace the removed esophageal(More)