Learn More
This paper presents a new set of hemispherical basis functions dedicated to hemispherical data representation. These functions are derived from associated Legendre polynomials. We demonstrate the usefulness of this basis for representation of surface reflectance functions, rendering using environment maps and for efficient global illumination computation(More)
Volumetric rendering is widely used to examine 3D scalar fields from scanners and direct numerical simulation datasets. One key aspect of volumetric rendering is the ability to provide shading cues to aid in understanding structure contained in the datasets. While shading models that reproduce natural lighting conditions have been shown to better convey(More)
Fast global illumination computation is a challenge in several fields such as lighting simulation and computergenerated visual effects for movies. To this end, the irradiance caching algorithm is commonly used since it provides high-quality rendering in a reasonable time. However this algorithm relies on a spatial data structure in which nearest-neighbors(More)
We first briefly describe the methodology of programming ray-tracing algorithms on distributed-memory parallel computers, or DMPCs, and review previous efforts to overcome the problems of data distribution and load balancing. Then we present two algorithms designed for DMPCs and implemented on an Intel iPSC/2. We also compare the results of our experiments(More)
We present nested radiosity, a new approach for simulating the distribution of natural light within plant canopies. The geometric description of a canopy requires many polygons, and its spatial coherence is lower than that of an architectural scene. We compute the total irradiance of polygons by summing the irradiance due to close polygons (calculated with(More)
Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) contents to address Low Dynamic Range (LDR) displays. While many solutions have been designed over the last decade, only few of them can cope with video sequences. Indeed, these TMOs tone map each frame of a video sequence separately, which results in temporal incoherency. Two main types of(More)
In this paper we present a ray tracing based method for accelerated global illumination computation in scenes with low-frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In particular we extend the irradiance caching scheme of [WRC88] to cache and interpolate directional incoming radiance(More)
In this paper, we show how to calibrate a camera and to recover the geometry and the photometry (textures) of objects from a single image. The aim of this work is to make it possible walkthrough and augment reality in a 3D model reconstructed from a single image. The calibration step does not need any calibration target and makes only four assumptions: (1)(More)