Learn More
Nod1 and Nod2 are members of the Nod-like receptor family that detect intracellular bacterial peptidoglycan-derived muramyl peptides. The biological effects of muramyl peptides have been described for over three decades, but the mechanism underlying their internalization to the cytosol remains unclear. Using the human epithelial cell line HEK293T as a model(More)
Inflammatory bowel disease (IBD) is an inflammatory condition that affects the gastrointestinal tract. The solute carrier (SLC) superfamily of transporters comprise proteins involved in the uptake of drugs, hormones, and other biologically active compounds. The purpose of this study was to determine the mRNA expression levels of 15 solute carrier(More)
In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIalpha from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and(More)
Oncostatin M regulates membrane traffic and stimulates apicalization of the cell surface in hepatoma cells in a protein kinase A-dependent manner. Here, we show that oncostatin M enhances the expression of the cyclin-dependent kinase (cdk)2 inhibitor p27(Kip1), which inhibits G(1)-S phase progression. Forced G(1)-S-phase transition effectively renders(More)
Signaling via cAMP plays an important role in apical cell surface dynamics in epithelial cells. In hepatocytes, elevated levels of cAMP as well as extracellular oncostatin M stimulate apical lumen development in a manner that depends on protein kinase A (PKA) activity. However, neither the identity of PKA isoforms involved nor the mechanisms of the(More)
BACKGROUND AND AIMS Transketolase-like (TKTL) 1 is one of the key enzymes for anaerobic sugar degradation even in the presence of oxygen (aerobic glycolysis). Transketolase-dependent reactions supply malignant tumors with ribose and NADPH. Therefore, TKTL1 activity could be crucial for tumor proliferation and survival. The aim of the study was to evaluate(More)
BACKGROUND Autophagy is a process of central importance for maintaining cell homeostasis, survival, and the regulation of inflammation. Recent studies associated variants within the gene loci, encoding protein tyrosine phosphatase nonreceptor type 2 (PTPN2), and autophagy genes, such as autophagy-related 16-like 1 (ATG16L1), with chronic inflammatory(More)
INTRODUCTION Polarized hepatocytes, like all epithelial cells, display distinct plasma membrane domains, an apical plasma membrane domain facing the bile canalicular lumen, and a baso-lateral plasma membrane domain facing the space of Disse. Concomitant with cell surface polarity, also the cell interior displays a polarized organization. A dense cortical(More)
In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RII␣ from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and(More)
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival,(More)