Kacem Chehdi

Learn More
Visual quality of color images is an important aspect in various applications of digital image processing and multimedia. A large number of visual quality metrics (indices) has been proposed recently. In order to assess their reliability, several databases of color images with various sets of distortions have been exploited. Here we present a new database(More)
This paper describes a recently created image database, TID2013, intended for evaluation of full-reference visual quality assessment metrics. With respect to TID2008, the new database contains a larger number (3000) of test images obtained from 25 reference images, 24 types of distortions for each reference image, and 5 levels for each type of distortion.(More)
A maximum-likelihood method for estimating hyperspectral sensors random noise components, both dependent and independent from the signal, is proposed. A hyperspectral image is locally jointly processed in the spatial and spectral dimensions within a multicomponent scanning window (MSW), as small as 7 × 7 × 7 spatial-spectral pixels. Each MSW(More)
A problem of lossy compression of hyperspectral images is considered. A specific aspect is that we assume a signal-dependent model of noise for data acquired by new generation sensors. Moreover, a signal-dependent component of the noise is assumed dominant compared to a signal-independent noise component. Sub-band (component-wise) lossy compression is(More)
In pattern recognition problems, the effectiveness of the analysis depends heavily on the quality of the image to be processed. This image may be blurred and/or noisy and the goal of digital image restoration is to find an estimate of the original image. A fundamental issue in this process is the blur estimation. When the blur is not readily avalaible, it(More)
Methods for blind estimation of signal dependent noise parameters from scatter-plots by polynomial regression are considered. Some new modifications as well as known ones are discussed and their performance is compared for test images with simulated signal dependent noise. Recommendations on method application and parameter setting are given.