Kaan T. Oner

Learn More
— In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler(More)
— We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers(More)
— This paper presents a robust position controller for a tilt-wing quadrotor to track desired trajectories under external wind and aerodynamic disturbances. Wind effects are modeled using Dryden model and are included in the dynamic model of the vehicle. Robust position control is achieved by introducing a disturbance observer which estimates the total(More)
Keywords: UAV Quad tilt-wing Aerodynamic design Carbon composite Hierarchical control system a b s t r a c t This paper presents aerodynamic and mechanical design, prototyping and flight control system design of a new unmanned aerial vehicle SUAVI (Sabanci University Unmanned Aerial VehIcle). SUAVI is an electric powered quad tilt-wing UAV that is capable(More)
—This paper presents design of a robust hovering controller for a quad tilt-wing UAV to hover at a desired position under external wind and aerodynamic disturbances. Wind and the aerodynamic disturbances are modeled using the Dryden model. In order to increase the robustness of the system, a disturbance observer is utilized to estimate the unknown(More)
  • 1