Learn More
The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units.(More)
We have reported that purified native MAP1B interacts with microtubules but not with microfilaments [Pedrotti and Islam, Cell Motil. Cytoskel. (1995) 30, 301-309]. However, MAP1B can be phosphorylated at multiple sites by casein kinase 11 (CKII) and proline-directed protein kinases (PDPK) and immunoblotting studies show that purified native MAP1B is(More)
Pre-phosphorylation of the microtubule-associated protein MAP2 with the co-purifying cAMP-independent protein kinase (a) decrease the affinity of MAP2 for taxol-stabilised microtubules, (b) increases the dissociation rate constant for microtubule polymerisation, each of which is dependent upon the level of phosphorylation, but (c) has no effect on the(More)
The effect of microtubule associated proteins on microtubule shape has been investigated in reconstitution experiments using purified tubulin and purified MAP1A, MAP1B, and MAP2. Microtubules assembled in the presence of these MAPs were fixed with 0.1% glutaraldehyde and, after negative staining, were examined by electron microscopy. The results show that(More)
Alzheimer's disease is a neurodegenerative disorder characterized by protein depositions in intracellular and extracellular spaces in the brain. The intraneuronal deposits are formed by neurofibrillary tangles composed mainly of abnormally phosphorylated tau, a microtubule-associated protein, whereas the major constituent of the amyloid deposited(More)
Lewy bodies, neuropathological hallmarks of Parkinson's disease and dementia with Lewy bodies, comprise alpha-synuclein filaments and other less defined proteins. Characterization of Lewy body proteins that interact with alpha-synuclein may provide insight into the mechanism of Lewy body formation. Double immunofluorescence labeling and confocal microscopy(More)
Extracellular deposition of amyloid fibrils and intraneuronal accumulation of paired helical filaments (PHFs) are the neuropathological hallmarks of Alzheimer's disease. The major constituent of amyloid fibrils is a 39- to 43-residue peptide (termed A beta), which is derived from a 695- to 770-amino-acid precursor protein (termed beta PP). The main(More)
High molecular weight microtubule-associated proteins MAP1A and MAP2 form thin projections from microtubule surfaces and have been implicated in crosslinking microtubules and other cytoskeletal components. We have purified native MAP1A from bovine brain and have studied its interaction with G- and F-actin. Using a solid-phase immunoassay we show that MAP1A(More)
The stoichiometry of the dimer between microtubule-associated protein 2 (MAP2) and tubulin has been determined by quantitative dodecylsulphate/polyacrylamide gel electrophoresis to be 1:12 mol X mol-1, a value equal to the number of phosphorylation sites that can be labelled in vitro. The distribution of these sites along the MAP2 primary sequence has been(More)
BACKGROUND Acute flaccid paralysis surveillance (AFP) is an essential strategy of the WHO's Polio Eradication Initiative. This is the first study conducted to estimate the incidence, etiology, distribution, and surveillance performance of AFP in Iraq. METHODS Surveillance data about the AFP cases under the age of 15 years reported from Iraq during January(More)