This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
This work proposes a two-stream ConvNet architecture which incorporates spatial and temporal networks and demonstrates that a ConvNet trained on multi-frame dense optical flow is able to achieve very good performance in spite of limited training data.
The proposed algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques.
WaveNet, a deep neural network for generating raw audio waveforms, is introduced; it is shown that it can be efficiently trained on data with tens of thousands of samples per second of audio, and can be employed as a discriminative model, returning promising results for phoneme recognition.
This work introduces a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network, and can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps.
This paper addresses the visualisation of image classification models, learnt using deep Convolutional Networks (ConvNets), and establishes the connection between the gradient-based ConvNet visualisation methods and deconvolutional networks.
It is found that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input.
It is shown that the data augmentation techniques commonly applied to CNN-based methods can also be applied to shallow methods, and result in an analogous performance boost, and it is identified that the dimensionality of the CNN output layer can be reduced significantly without having an adverse effect on performance.
The dataset is described, the statistics are described, how it was collected, and some baseline performance figures for neural network architectures trained and tested for human action classification on this dataset are given.
An algorithm based solely on reinforcement learning is introduced, without human data, guidance or domain knowledge beyond game rules, that achieves superhuman performance, winning 100ā0 against the previously published, champion-defeating AlphaGo.