Learn More
Conformational changes are thought to underlie the activation of heterotrimeric GTP-binding protein (G protein)-coupled receptors. Such changes in rhodopsin were explored by construction of double cysteine mutants, each containing one cysteine at the cytoplasmic end of helix C and one cysteine at various positions in the cytoplasmic end of helix F. Magnetic(More)
Thirty consecutive single cysteine substitution mutants in the amino acids Q225-I256 of bovine rhodopsin have been prepared and modified with a sulfhydryl specific nitroxide reagent. This sequence includes the E-F interhelical loop, a transducin interaction site. The accessibilities of the attached nitroxides to collisions with hydrophilic and hydrophobic(More)
The cytoplasmic interhelical E-F loop in rhodopsin is a part of the region that interacts with the G-protein transducin and rhodopsin kinase during signal transduction. In extending the previous work on systematic single cysteine substitutions of the amino acids in the cytoplasmic C-D loop, we have now replaced, one at a time, the amino acids Q225-I256 in(More)
To probe proximity relationships between different amino acids in the interhelical loops in the cytoplasmic domain of rhodopsin, we are using a general approach in which two cysteine residues are introduced at different locations. Here we report on the characteristics of one such mutant that contains the naturally occurring cysteine 316 near the cytoplasmic(More)
A glutathione S-transferase (GST) gene was cloned in Arabidopsis thaliana. The gene, designated ATGST 1, contained the entire transcription unit in three exons interrupted by two introns. The combined sequence of three exons had an open reading frame which predicted a GST protein of 208 amino acids. Gene transcription has been reported to be induced by(More)
  • 1