K. Y. Esther Leung

Learn More
Three-dimensional (3-D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction. It involves evaluating wall motion of the left ventricle, by visually analyzing ultrasound images obtained in rest and in different stages of stress. Since the acquisitions are performed minutes apart, variabilities may exist in the visualized(More)
Automated landmark detection may prove invaluable in the analysis of real-time three-dimensional (3D) echocardiograms. By detecting 3D anatomical landmark points, the standard anatomical views can be extracted automatically in apically acquired 3D ultrasound images of the left ventricle, for better standardization of visualization and objective diagnosis.(More)
The analysis of echocardiograms, whether visual or automated, is often hampered by ultrasound artifacts which obscure the moving myocardial wall. In this study, a probabilistic framework for tracking the endocardial surface in 3D ultrasound images is proposed, which distinguishes between visible and artifact-obscured myocardium. Motion estimation of visible(More)
  • 1