Learn More
Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed(More)
Human embryonic stem (ES) cells possess an enormous potential for applications in regenerative medicine. However, these cells have several inevitable hurdles limiting their clinical applications, such as transplant rejection and embryo destruction. A milestone recently achieved was the derivation of induced pluripotent stem (iPS) cells by over-expressing(More)
Human amniotic fluid cells (AFCs) are routinely obtained for prenatal diagnostics procedures. Recently, it has been illustrated that these cells may also serve as a valuable model system to study developmental processes and for application in regenerative therapies. Cellular reprogramming is a means of assigning greater value to primary AFCs by inducing(More)
Although several model systems have been developed to characterize the function of the dopamine transporter (DAT), there is a relative lack of data regarding dopamine (DA) uptake by human caudate, as contrasted to binding studies. Cryopreserved human brain tissue can be used for functional as well as radioligand binding studies of neuronal proteins. The(More)
The first successful reprogramming of differentiated cells to a pluripotent state was done by retroviral introduction of four transcription factors (Oct4, Sox2, Klf4, cMyc) by the group of Yamanaka in 2006. Since then, scientists all over the world have attempted various methods to avoid insertional mutagenesis, a major limitation of the retrovirus-based(More)
Friedreich's ataxia is an inherited neurodegenerative disease caused by the reduced expression of the mitochondrially active protein frataxin. We have previously shown that mice with a hepatocyte-specific frataxin knockout (AlbFxn(-/-)) develop multiple hepatic tumors in later life. In the present study, hepatic carbohydrate metabolism in AlbFxn(-/-) mice(More)
Endothelialization seems to be a possibility to reduce thrombogenicity of artificial vascular prostheses. We have been occupied to find an ideal coating for the cells. Substances of extracellular matrix (ECM) were used: human fibronectin (HFN), laminin, collagen type I + III + IV. We have compared the influence of these materials with regard to adherence,(More)
  • 1