Learn More
Mitosis requires dynamic attachment of chromosomes to spindle microtubules. This interaction is mediated largely by kinetochores. During prometaphase, forces exerted at kinetochores, in combination with polar ejection forces, drive congression of chromosomes to the metaphase plate. A major question has been whether kinetochore-associated microtubule motors(More)
p21c-ras plays a critical role in mediating tyrosine kinase-stimulated cell growth and differentiation. However, the pathways through which p21c-ras propagates these signals remain unknown. We report that in PC12 cells, expression of a dominant inhibitory mutant of ras, c-Ha-ras(Asn-17), antagonizes growth factor- and phorbol ester-induced activation of the(More)
Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of(More)
Accurate chromatid separation is monitored by a checkpoint mechanism that delays anaphase onset until all centromeres are correctly attached to the mitotic spindle. Using Xenopus egg extracts, the kinetochore-associated microtubule motor protein CENP-E is now found to be required for establishing and maintaining this checkpoint. When CENP-E function is(More)
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for(More)
The kinesin-like protein CENP-E transiently associates with kinetochores following nuclear envelope breakdown in late prophase, remains bound throughout metaphase, but sometime after anaphase onset it releases and by telophase becomes bound to interzonal microtubules of the mitotic spindle. Inhibition of poleward chromosome movement in vitro by CENP-E(More)
The neuron-like differentiation of PC12 cells is induced by nerve growth factor (NGF) through stimulation of a membrane-bound protooncoprotein signaling pathway containing the NGF receptor Trk, the tyrosine kinase Src, and the GTP-binding protein Ras. The Raf-1 and B-raf protooncogenes encode cytoplasmic serine/threonine kinases that are stimulated by NGF(More)
Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor(More)
CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is(More)
Several members of the kinesin family of microtubule motor proteins play essential roles in mitotic spindle function and are potential targets for the discovery of novel antimitotic cancer therapies. KSP, also known as HsEg5, is a kinesin that plays an essential role in formation of a bipolar mitotic spindle and is required for cell cycle progression(More)