Learn More
In the context of a proposed design of a solid-state receiver for quantum communications, we consider the Zeeman splitting of the light-hole states in strained cubic heterostructures with an in-plane external magnetic field. The choice of interband optical transitions that allows coherent transfer of photon polarization to electron spin suggests that the(More)
The recent observation of superconductivity with critical temperatures (Tc) up to 55 K in the pnictide RFeAsO(1-x)F(x), where R is a lanthanide, marks the first discovery of a non-copper-oxide-based layered high-Tc superconductor. It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprate superconductors, as both(More)
The interplay among charge, spin and lattice degrees of freedom in solids gives rise to intriguing macroscopic quantum phenomena such as colossal magnetoresistance, multiferroicity and high-temperature superconductivity. Strong coupling or competition between various orders in these systems presents the key to manipulate their functional properties by means(More)
We show that a multilayer analysis of the infrared c-axis response of RBa2Cu3O(7-δ) (R=Y, Gd, Eu) provides important new information about the anomalous normal-state properties of underdoped cuprate high temperature superconductors. In addition to competing correlations which give rise to a pseudogap that depletes the low-energy electronic states below(More)
With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier concentration of N(s) approximately = 5-9x10(13) cm(-2), an effective mass of m*=3.2+/-0.4m(e), and a strongly frequency dependent mobility. The latter are similar as in bulk SrTi(1-x)Nb(x)O3 and(More)
The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can(More)
We measure the anisotropic midinfrared response of electrons and phonons in bulk YBa(2)Cu(3)O(7-δ) after femtosecond photoexcitation. A line shape analysis of specific lattice modes reveals their transient occupation and coupling to the superconducting condensate. The apex oxygen vibration is strongly excited within 150 fs, demonstrating that the lattice(More)
An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot is proposed. In contrast with the common calculations of spin-flip transitions between the Kramers doublets, we take into account a process of phonon-mediated fluctuation in the electron spin preces-sion and subsequent spin phase diffusion. Specifically, we(More)
We report muon spin rotation (μSR) and infrared spectroscopy experiments on underdoped BaFe1.89Co0.11As2 which show that bulk magnetism and superconductivity (SC) coexist and compete on the nanometer length scale. Our combined data reveal a bulk magnetic order, likely due to an incommensurate spin density wave (SDW), which develops below T(mag)≈32  K and(More)
Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An(More)