K Venkateswara Swamy

Learn More
Novel plumbagin hydrazonates were prepared, structurally characterized and evaluated for anti-proliferative activity against estrogen receptor-positive MCF-7 and triple negative MDA-MB-231 and MDA-MB-468 breast cancer cell lines which exhibited superior inhibitory activity than parent plumbagin compound. Molecular docking studies indicated that hydroxyl(More)
A novel Plumbagin-Isoniazid Analog (PLIHZ) and its β-cyclodextrin inclusion complex (PLIHZCD) is prepared, characterized and evaluated for antitubercular activity under low and high iron conditions. PLIHZCD inclusion complex was characterized by Fourier Transform Infra-Red (FTIR), Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction Studies(More)
Thymoquinone (TQ), isolated from the seeds of Nigella sativa, show moderate efficacy against pancreatic cancer. In the present work we report synthesis and characterization of novel TQ analogs appended with gallate and fluorogallate pharmacophores and evaluation of their effects against pancreatic cancer cell lines for cell viability and induction of(More)
Currently used anti-tubercular drugs target actively growing Mycobacterium tuberculosis (Mtb) but there are no current therapies targeting persistent mycobacteria. Isocitrate lyase (ICL) is an important enzyme of the glyoxylate shunt pathway used by Mtb for sustaining intracellular infection in inflammatory macrophages under conditions of stress such as(More)
Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme have been found to play a role in promoting growth in colon cancer cell lines. The di-tert-butyl phenol class of compounds has been found to inhibit both COX-2 and 5-LOX enzymes with proven effectiveness in arresting tumor growth. In the present study, the structural analogs of 2,6(More)
Novel Aza-resveratrol analogs were synthesized, structurally characterized and evaluated for cytotoxic activity against MDA-MB-231 and T47D breast cancer cell lines, which exhibited superior inhibitory activity than parent resveratrol compound. The binding mechanism of these compounds with estrogen receptor-α was rationalized by molecular docking studies(More)
  • 1