Learn More
Chloride intracellular channel (CLIC)4 is a p53- and tumor necrosis factor alpha (TNFalpha)-regulated chloride channel protein that is localized to the mitochondria and cytoplasm of mouse and human keratinocytes. CLIC4 protein increases in differentiating keratinocytes and in keratinocytes exposed to DNA-damaging agents and metabolic inhibitors. Increasing(More)
Formation of new vessels from pre-existing capillaries demands extensive reprogramming of endothelial cells through transcriptional and post-transcriptional events. We show that 120 protein spots in a two-dimensional isoelectric focusing/electrophoretic analysis were affected during vascular endothelial growth factor-A-induced endothelial cell tubular(More)
Myc is a key regulatory protein in higher eukaryotes controlling important cellular functions such as proliferation, differentiation, and apoptosis. Myc is profoundly involved in the genesis of many human and animal cancers, and the abrogation of Myc-induced apoptosis is a critical event in cancer progression. Because the mechanisms that mediate Myc-induced(More)
Chloride intracellular channel (CLIC) 4 is a member of a redox-regulated, metamorphic multifunctional protein family, first characterized as intracellular chloride channels. Current knowledge indicates that CLICs participate in signaling, cytoskeleton integrity and differentiation functions of multiple tissues. In metabolically stressed skin keratinocytes,(More)
Multiple omics researches in the past two decades have identified over 200 potential biomarkers for ovarian cancer. Discoveries during the 1990s were more focused on clinicopathology-based biomarkers that were targeted to support diagnosis, but the emphasis has shifted to the identification of prognostic biomarkers in the past 10 years. The post-genomic era(More)
Nuclear translocation of chloride intracellular channel protein CLIC4 is essential for its role in Ca(2+)-induced differentiation, stress-induced apoptosis, and modulating TGF-beta signaling in mouse epidermal keratinocytes. However, post-translational modifications on CLIC4 that govern nuclear translocation and thus these activities remain to be(More)
CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to the mitochondria and cytoplasm of keratinocytes and participates in the apoptotic response to stress. We now show that multiple stress inducers cause the translocation of cytoplasmic CLIC4 to the nucleus. Immunogold electron microscopy and confocal analyses indicate that nuclear CLIC4 is(More)
mtCLIC/CLIC4 (referred to here as mtCLIC) is a p53- and tumor necrosis factor alpha-regulated cytoplasmic and mitochondrial protein that belongs to the CLIC family of intracellular chloride channels. mtCLIC associates with the inner mitochondrial membrane. Dual regulation of mtCLIC by two stress response pathways suggested that this chloride channel protein(More)
Despite the widespread use of conventional and contemporary methods to detect ovarian cancer development, ovarian cancer remains a common and commonly fatal gynecological malignancy. The identification and validation of early detection biomarkers highly specific to ovarian cancer, which would permit development of minimally invasive screening methods for(More)
Mantle cell lymphoma (MCL) is a mostly incurable malignancy arising from naive B cells (NBCs) in the mantle zone of lymph nodes. We analyzed genomewide methylation in MCL patients with the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) assay and found significant aberrancy in promoter methylation patterns compared with normal NBCs. Using(More)