Learn More
Transgenic mice overexpressing different forms of amyloid precursor protein (APP), i.e. wild type or clinical mutants, displayed an essentially comparable early phenotype in terms of behavior, differential glutamatergic responses, deficits in maintenance of long term potentiation, and premature death. The cognitive impairment, demonstrated in F1 hybrids of(More)
Mutations in the human tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17. Some mutations, including mutations in intron 10, induce increased levels of the functionally normal four-repeat tau protein isoform, leading to neurodegeneration. We generated transgenic mice that overexpress the four-repeat human tau protein isoform(More)
Protein tau filaments in brain of patients suffering from Alzheimer's disease, frontotemporal dementia, and other tauopathies consist of protein tau that is hyperphosphorylated. The responsible kinases operating in vivo in neurons still need to be identified. Here we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) is an effective kinase for(More)
Epidemiological studies have established that the epsilon 4 allele of the ApoE gene (ApoE4) constitutes an important risk factor for Alzheimer's disease and might influence the outcome of central nervous system injury. The mechanism by which ApoE4 contributes to the development of neurodegeneration remains unknown. To test one hypothesis or mode of action(More)
In transgenic mice that overexpress mutant Amyloid Precursor Protein [V717I], or APP/London (APP/Lo) (1999a. Early phenotypic changes in transgenic mice that overexpress different mutants of Amyloid Precursor Protein in brain. J. Biol. Chem. 274, 6483-6492; 1999b. Premature death in transgenic mice that overexpress mutant Amyloid precursor protein is(More)
Glycogen synthase kinase-3beta (GSK-3beta) is important in neurogenesis. Here we demonstrate that the kinase influenced post-natal maturation and differentiation of neurons in vivo in transgenic mice that overexpress a constitutively active GSK-3beta[S9A]. Magnetic resonance imaging revealed a reduced volume of the entire brain, concordant with a nearly 20%(More)
The potential contribution of cyclin-dependent protein kinase 5 (cdk5) to hyperphosphorylate protein tau, as claimed in Alzheimer's disease, was investigated in vivo. We generated single, double, and triple transgenic mice that coexpress human cdk5 and its activator p35 as well as human protein tau in cerebral neurons. Whereas expression and increased(More)
A methanolic extract of 350,000 adult grey fleshflies Neobellieria bullata, was prepared and screened for myotropic activity. After fractionation on the first column, all fractions were screened in two heterologous (Locusta oviduct and Leucophaea hindgut) and one homologous (Neobellieria hindgut) myotropic bioassay. We here report the purification of one(More)
We have reported transgenic mice with neuronal overexpression of the clinical mutant beta-amyloid precursor protein (APP) known as London, which develop an AD-related phenotype [Moechers, Dewachter, Lorent, Reversé, Baekelandt, Nadiu, Tesseur, Spittaels, Van den Haute, Checler, et al. (1999) J. Biol. Chem. 274, 6483-6492]. Characterized early symptoms (3-9(More)
Coexpression of constitutively active GSK-3beta[S9A] rescued the axonal pathology induced by overexpression of human tau in transgenic mice (Spittaels et al., (2000) J. Biol. Chem. 275, 41340-41349). We isolated dorsal root ganglion (DRG) neuronal cultures from adult tau4R- and tau4R x GSK-3beta-transgenic mice to define the mechanisms at the cellular and(More)