Learn More
  • K Slenzka
  • Advances in space research : the official journal…
  • 2003
Neuroplasticity refers to the ability of neurons to alter some functional property in response to alterations in input. Most of the inputs received by the brain and thus the neurons are coming from the overall sensory system. The lack of gravity during space flight or even the reduction of gravity during the planned Mars missions are and will change these(More)
On the basis of quantitative disturbances of the swimming behaviour of aquatic vertebrates ("loop-swimming" in fish and frog larvae) following long-term hyper-g-exposure the question was raised whether or not and to what extent changes in the gravitational vector might influence the CNS at the cellular level. Therefore, by means of histological,(More)
Quantitative data are presented on the influences of hyper-gravity (3 +/- 1g) and of simulated weightlessness (approximately 0g) during early ontogeny of cichlid fish (Oreochromis mossambicus) and clawed toad (Xenopus laevis, Daudin) demonstrating changes in the swimming behaviour and the brain energy and plasma membrane metabolism. After return to 1g(More)
The development of creatine kinase (CK) activity was studied in the brain of cichlid fish and clawed toads. The activity of CK in the whole brain of the fish decreases immediately after hatching (stage 6) from values of about 135 nmol substrate cleaved/mg protein/min to a value of about 105 at stage 8 (5 days post hatch at 20 degrees C). With the exception(More)
Application of the Gouy-Chapman-Debye-Hückel (GCDH) theory to a model membrane in contact with electrolytes of various concentrations and composition predict density variations within an interfacial layer. Assuming that on cellular dimensions hydrodynamics can be applied (the objections are briefly discussed) two types of gravity effects can be defined, 1.(More)
This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic aircraft flights)(More)
Glucose-6-phosphate dehydrogenase activity was studied in the brain of the cichlid fish Oreochromis mossambicus during early ontogenetic development. In general a slight but continuous decrease in enzyme activity was found (9.5 +/- 0.5 nmol substrate cleaved per mg protein and per min at developmental stage 13 [= 1 day post hatch at 28 degrees C] to a value(More)
The regional metabolic activity in the otolithic sensory epithelia of the inner ear of a cichlid fish (Oreochromis mossambicus) was investigated on light- and electronmicroscopical level using the cytochemical method for detection of cytochrome oxidase activity. In adult animals a characteristic distribution of mitochondria with high enzyme activity was(More)
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of(More)
The mitochondrial enzyme, cytochrome oxidase, was localized cytochemically in the nucleus magnocellularis, a primary relay nucleus of vestibular information within the area octavolateralis in the fish brain. Cichlid fish larvae were analyzed after long-term exposure (9 days) to altered gravity situations: increased acceleration in a centrifuge (3 g) and(More)