Learn More
Three dimensional finite-difference time-domain (FDTD) simulations are employed to show that light scattering techniques may be used to infer the mitochondrial distributions that exist within single biological cells. Two-parameter light scattering plots of the FDTD light scattering spectra show that the small angle forward scatter can be used to(More)
Anti-resonant reflecting optical waveguides (ARROW) are described which trap light in a low index layer between a lower, high-index confining layer and an upper total internal reflection boundary. In this configuration, most of the light (greater than 80%) travels in the low index porous polymer layer, the refractive index of which is monitored by examining(More)
An integrated microfluidic planar optical waveguide system for measuring light scattered from a single scatterer is described. This system is used to obtain 2D side-scatter patterns from single polystyrene microbeads in a fluidic flow. Vertical fringes in the 2D scatter patterns are used to infer the location of the 90-deg scatter (polar angle). The 2D(More)
BACKGROUND We present an optical waveguide based cytometer that is capable of simultaneously collecting the light scattered by cells over a wide range of solid angles. Such comprehensive scattering data are a prerequisite for the microstructural characterization of cells. METHODS We use latex beads as cell mimics, and demonstrate the ability of this new(More)
The resonant mirror sensor is a planar optical sensor platform that uses frustrated total internal reflection to couple light into and out of a leaky waveguiding layer. The evanescent wave associated with the dielectric structure is very sensitive to changes in surface refractive index caused by the binding of macromolecules to immobilised proteins or other(More)