Learn More
Using Kelsey, Gellatly, and Clark (1958) unit load method, upper and lower bounds for the effective transverse shear moduli of a chevron folded core used in sandwich construction are analytically derived and compared to finite element computations. We found that these bounds are generally loose and that in some cases chevron folded cores are 40% stiffer(More)
In a previous paper from the authors, the bounds from Kelsey et al. (1958) were applied to a sandwich panel including a folded core in order to estimate its shear forces stiffness (Lebée and Sab, 2010b). The main outcome was the large discrepancy of the bounds. Recently, Lebée and Sab (2011a) suggested a new plate theory for thick plates –the(More)
In the first part (Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff-Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called(More)
In this paper, we present a formulation for coupling discrete and continuum models for both dynamic and static analyses. This kind of formulation offers the possibility of carrying out better simulations of material properties than the discrete calculations, and with both larger length scales and longer times. Using only a discrete approach to simulate a(More)
In a recent work, a new plate theory for thick plates was suggested where the static unknowns are those of the Kirchhoff-Love theory, to which six components are added representing the gradient of the bending moment [1]. This theory, called the Bending-Gradient theory, is the extension to multilayered plates of the Reissner-Mindlin theory which appears as a(More)
This paper presents a coupled Discrete/Continuous method for computing lattices and its application to a masonry-like structure. This method was proposed and validated in the case of a one dimensionnal (1D) railway track example presented in (Hammoud et al. (2009)). We study here a 2D model which consists of a regular lattice of square rigid grains(More)
  • 1